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Abstract
Reliable remote sensing platforms and methods for monitoring phytoplankton are needed for mitigating the

detrimental impacts of cyanobacterial harmful algal blooms on small inland waterbodies. Commercial unoccu-
pied aerial systems (UASs) present an affordable high-resolution solution for the rapid assessment of
cyanobacterial abundance in small aquatic systems by recording the reflectance of photosynthetic pigments
found in all phytoplankton (i.e., chlorophyll a [Chl a]) and those related to cyanobacteria (i.e., phycocyanin).
This study evaluates the performance of four sensors, including visible light spectra (red, green, blue - [RGB])
sensors on the Phantom 4 and Phantom 4 Professional platforms, the MAPIR Survey3W modified multispectral
(i.e., near-infrared, green, blue) sensor, and the Parrott Sequoia multispectral (i.e., green, red, near-infrared,
red-edge) sensor for estimating cyanobacterial abundance. The performance of each sensor was determined by
comparing 26 vegetation indices to Chl a and phycocyanin measurements of 54 ponds that varied in size and pro-
ductivity. Vegetation indices that included the red and near-infrared wavelengths generated from Parrot Sequoia
aerial images provided the best Chl a (i.e., Normalized Difference Vegetation Index, r2 = 0.79, p < 0.0001) and
phycocyanin (i.e., Green Normalized Difference Vegetation Index, r2 = 0.64, p < 0.0001) estimates. The RGB sen-
sors were moderately effective for estimating Chl a, whereas the MAPIR Survey3W generated poor estimates of
both pigments due to differences in recorded wavelengths. Results suggest commercial multiband multispectral
UAS sensors provide a low-cost, plug-and-play alternative for managers and researchers interested in integrating
remote sensing tools for quantitatively estimating phytoplankton abundance in small inland systems.

Small inland waterbodies are ubiquitous and provide impor-
tant ecosystems services, including, but not limited to, drinking
water supply, food production, aquatic recreation, and climate
regulation (Biggs et al. 2017). Blooms dominated by
cyanobacterial harmful algal blooms (CyanoHABs) are becom-
ing more frequent and intense as a result of climate change and
cultural eutrophication (Huisman et al. 2018). CyanoHABs
impair freshwater systems through the production of toxins
(i.e., cyanotoxins) linked to illness and fatalities in livestock,
pets, and humans, as well as off-flavor compounds
(e.g., geosmin and 2-methylisoborneol) that impart a musty
scent and flavor on drinking water and farm-raised fish leading
to significant economic losses to aquaculture and drinking

water industries (Merel et al. 2013; Tucker and Schrader 2020).
CyanoHABs are traditionally monitored via cell counts or by
measuring the concentration of photosynthetic pigments
found in all phytoplankton (i.e., chlorophyll a [Chl a]) relative
to accessory pigments abundant in cyanobacteria (i.e., phycocy-
anin). However, traditional methods are constrained by
processing times, training, cost, and may not be representative
of the entire waterbody (Kutser 2004; Merel et al. 2013). Reli-
able tools that can rapidly and accurately quantify the abun-
dance of ecologically important phytoplankton (e.g., green
algae and diatoms) relative to toxin-producing cyanobacteria in
small drinking water sources, aquaculture farms, and recrea-
tional water bodies are necessary for implementing monitoring,
response, and forecasting tools for mitigating the ecological,
economic, and health impacts of CyanoHABs.

In large inland systems, satellite remote sensing has been
useful for recording long-term and seasonal bloom dynamics
and understanding how external factors, such as surface water
temperature, meteorological events, and anthropogenic nutri-
ent loading drive CyanoHAB occurrence (Wynne et al. 2010;
Shi et al. 2017). Several satellites generate reliable data for
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monitoring the spatial and temporal distribution of algal
blooms, including satellites from the Landsat series, Moderate
Resolution Imaging Spectroradiometer (MODIS) Aqua and
Terra, MEdium Resolution Imaging Spectrometer (MERIS),
Sentinel 2-A/B, and Hyperion (Brivio et al. 2001; Kutser 2004;
Kutser et al. 2006; Yacobi et al. 2011; Shi et al. 2017; Drozd
et al. 2020). Yet, low spatial and temporal resolution, atmo-
spheric correction challenges, cloud cover, slow data-product
turn-around times, and cost of some satellite products can
limit the application of satellite remote sensors for monitoring
CyanoHABs in small inland systems (Lomax et al. 2005). For
example, MERIS is a multispectral sensor used to detect and
measure cyanobacteria when present at high densities (Kutser
et al. 2006; Wynne et al. 2010). However, the spatial resolu-
tion of 300 m and revisit times of 2 days limit its application
for smaller waterbodies. The hyperspectral imager in space,
Hyperion, collects data from 196 spectral bands in the 400–
2500 nm region. Although Hyperion data have been useful for
monitoring water quality parameters, such as Chl a and chro-
mophoric dissolved organic matter (Brando and Dekker 2003),
it’s 30 m spatial resolution is not sufficient for studying inland
CyanoHABs, particularly in the presence of patchy surface
scums (Kutser 2004). Therefore, satellite data are not reliable
when monitoring small inland systems, such as ponds, lakes,
and rivers, especially if cyanobacteria are present.

Unoccupied aerial systems (UASs) (remotely piloted remote
sensing platforms; i.e., drones), show great potential for bridg-
ing the gap between in situ water sampling and satellite remote
sensing. UASs collect high-resolution aerial data with minimal
atmospheric disturbance from cloud coverage, allow flexible
flight planning with rapid turn-around times, and are available
in a variety of wavelength combinations (Kislik et al. 2018).
However, UASs are restricted by battery life that can limit
flight times, maximum payload capabilities that determine
which sensors and communication hardware can be mounted
on the aircraft, weather limitations (e.g., wind and precipita-
tion), GPS connection needs, and startup costs (Kislik
et al. 2018). Moreover, factors such as sun glint, shadows,

suspended solids, and water depth can cause inaccurate phyto-
plankton estimates or complicate image processing for both
satellite and UAS remote sensing (Kislik et al. 2018). Commer-
cially available UAS sensors are classified as visible wavelength
(RGB), modified or multiband multispectral, thermal, or hyper-
spectral. Multispectral sensors record wavelengths that fall
within and outside the visible light spectrum (i.e., RGB and
near-infrared, respectively) and are classified as multiband or
modified. Multiband multispectral sensors collect data for 4–6
bands, and each band typically has a dedicated sensor. While
more expensive, multiband sensors generate high-resolution
results, and many are designed to measure the photosynthetic
activity of terrestrial crops. For example, the Parrot Sequoia
multiband multispectral sensor records green, red, red-edge,
and near-infrared bands, which can be used to calculate the
Normalized Difference Vegetation Index (NDVI) and is
marketed for measuring crop health (Fig. 1). Sensors that mea-
sure the red-edge (735 nm) region of high reflectance between
the red and near-infrared wavelengths can be as effective at
estimating the Chl a concentration of crops as hyperspectral
sensors (Lu et al. 2019). However, the value of the red-edge
wavelength for monitoring CyanoHABs can be dependent on
the trophic status of the waterbody (Cillero Castro et al. 2020).
Modified multispectral sensors are a low-cost alternative to
multiband multispectral sensors. One such example is the
MAPIR Survey3W near-infrared, green, blue (NGB), which is
an RGB sensor with a filter that sacrifices the red wavelength
to record the near-infrared wavelength (Fig. 1). Although mod-
ified multispectral sensors typically have lower resolutions
than multiband multispectral sensors, they have been used to
estimate cyanobacterial buoyant packed cell volume (Van der
Merwe and Price 2015). Lastly, many UASs, such as the DJI
Phantom series, are equipped with an integrated RGB sensor
that provides a cost-effective alternative to multispectral sen-
sors (Fig. 1). RGB sensors can detect algal cover and biomass in
coastal systems (Xu et al. 2018; Cheng et al. 2020), but further
research is needed before these sensors can reliably estimate
cyanobacterial abundance.

Fig 1. Measured wavelength (nm) for the DJI Phantom 4 and Phantom 4 Pro integrated RGB cameras, MAPIR Survey3W NGB modified 3-band multi-
spectral sensors, and Parrot Sequoia multiband multispectral sensors utilized in this study, overlaid over the in vivo spectral absorption of Chl a (solid line)
and phycocyanin (dashed line). Phantom 4 and Phantom 4 Pro series measured wavelengths are proprietary information and are therefore estimated
from García-Fern�andez et al. (2021). Chlorophyll and phycocyanin spectral response curves are modified from Simis and Kauko (2012).
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Monitoring CyanoHABs with UASs has been hindered by
the lack of standardized methods for aerial image collection,
validation techniques, and universal algorithms for processing
UAS data (Kislik et al. 2018). In addition, there is no consensus
on which sensor type or vegetation index works best for esti-
mating Chl a, and few have been used to estimate phycocya-
nin concentration. Chl a, present in all phytoplankton,
including chlorophytes and cyanobacteria, absorbs red and
blue wavelengths at approximately 430 and 662 nm, respec-
tively, and reflects green and near-infrared wavelengths at
approximately 500 and 700–1300 nm, respectively (Fig. 1).
Accessory pigments found in cyanobacteria, such as phycocya-
nin (absorbance at 620 nm), allow cyanobacteria to absorb
light at a broader spectrum and protect them from solar radia-
tion (Oliver et al. 2012). Additional factors, such as inorganic
suspended matter, colored dissolved organic matter, and non-
algal organic matter affect water reflectance properties, and
these effects vary greatly based on the composition of the parti-
cles (Morel 2001). The absorbance and reflection characteristics
of Chl a and phycocyanin can be magnified by calculating
band ratio algorithms (i.e., vegetation indices) that emphasize
the spectral characteristics of photosynthetic pigments, water,
and soil leading to better estimates than single-band measure-
ments (Xue and Su 2017). The goal of this study was to evalu-
ate whether commercially available sensors are a feasible
monitoring alternative for drinking water and aquaculture
facility managers, as well as for researchers focused on smaller
aquatic ecosystems. To determine which sensor and vegetation
index combination is best for monitoring Chl a and phycocya-
nin, aerial images collected by four sensors that vary in mea-
sured wavelengths, bandwidths, resolution, and price were
used to calculate 26 vegetation indices. The four sensors cho-
sen are commonly used for agricultural research and include
two visible RGB sensors (DJI Phantom 4 and Phantom 4 Pro),
one modified multispectral sensor (MAPIR Survey3W), and a
multiband multispectral sensor (Parrot Sequoia). Vegetation
index values were compared to in situ Chl a and phycocyanin
measurements to determine which sensor and vegetation index
combination should be considered for estimating phytoplank-
ton and cyanobacterial abundance in small aquatic systems.

Materials and procedures
Study area and field survey methods

Aerial images were collected over several research, aquacul-
ture, and recreational ponds from September 2019 to July
2020 (Table 1). UAS flights 1, 2, and 3 were conducted at a
commercial aquaculture facility in Alabama, USA (Fig. 2). UAS
flights 4, 5, 6, and 7 were conducted at the E.W. Shell Fisheries
Center of Auburn University in Auburn, Alabama, USA, which
is a 1600-acre research facility equipped with over 300 man-
made experimental aquaculture ponds ranging in size, depth,
and productivity (Fig. 3). Research and commercial aquacul-
ture ponds frequently experience high cyanobacterial T
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abundance due to long residence times and high nutrient
inputs in the form of fish feed. Flights 8, 9, and 10 were con-
ducted over the man-made aesthetic pond at the Jule Collins
Smith Museum of Fine Art at Auburn University, which fre-
quently experiences dense cyanobacterial blooms (Fig. 4).

Aerial images were collected on clear days when the solar
altitude was less than 43� to avoid sun glint effects (Ortega-
Terol et al. 2017). Flights were fully automated based on speci-
fied flight plans on the free mobile device application
Pix4Dcapture. Details for each flight are found in Table 1. Gro-
und control targets (black and gray, 0.37 m2) were positioned
around the survey area prior to flights as horizontal ground
control points (GCP). Geographic coordinates were collected
for each GCP target and each water sample collection site
using a Trimble Geo7x Handheld GNSS System. Geographical
point data were then post-processed with the Global Naviga-
tion Satellite System (GNSS) post-processing program Trimble
GPS Pathfinder Office to improve geospatial accuracy during
aerial image processing (�4 cm accuracy).

UAS description
Due to the weight of the modified and multiband multi-

spectral sensors, two separate UASs were used (Table 2). Flights
were conducted immediately one after the other to minimize
sun angle variation between flights.

The MAPIR, Inc. Survey3W NGB modified 3-band multi-
spectral sensor was mounted on a DJI Phantom 4 quadcopter.
The Survey3W NGB is a Sony Exmor R IMX117 12MP

(Bayer RGB) camera that sacrifices the red band to measure
the near-infrared wavelength (Fig. 1; Table 2). The Survey3W
was programmed to capture aerial images at a 0.5 s interval at
nadir (90� in reference to the horizontal plane) and collect
both RAW data (GPS location, 12 bit per channel) and JPEG
images (8 bit per channel). The Survey3W was equipped with
a Survey3 Advanced GPS Receiver (20.6 g) that generates a
geolocation stamp for each JPEG image captured. The Sur-
vey3W was mounted on the Phantom 4 quadcopter using a
plastic tilting camera mount in a way that did not obstruct
the Phantom 4’s RGB camera. Visual light spectrum reflec-
tance data were collected with the Phantom 4’s integrated
visual spectrum 12.4 M RGB camera (Fig. 1). The Phantom
4 was equipped with a GPS/GLONASS integrated system that
GPS tags the images with latitude, longitude, and altitude
information (Table 2).

The Parrot Sequoia 4.0 multiband multispectral sensor was
mounted on a DJI Phantom 4 Pro quadcopter. The Parrot
Sequoia multispectral sensor is equipped with green, red, red-
edge and near-infrared monochrome sensors, an RGB sensor
and an integrated GPS and light sensor (Fig. 1; Table 2).
Images were captured at a 1.5 s interval at nadir. The Parrot
Sequoia was mounted on the Phantom 4 Pro using a plastic
mount that did not block the field of view of the UAS’s inte-
grated RGB camera. Visual light spectrum images were col-
lected at nadir with the Phantom 4 Pro’s integrated 20 M RGB
camera, and latitude, longitude, and altitude information were
collected with the UAS’s GPS/GLONASS (Table 2).

Fig 2. Orthomosaics generated from aerial images collected with the integrated RGB sensor of a Phantom 4 Pro at a commercial aquaculture facility in
Alabama, USA. Water sample collection locations are shown as black dots and GCP locations are shown as white dots. Panel labels (a-c) correspond with
columns in Table 1. White blocks seen in (b) and (c) are caused by orthomosaic generation failure due to wind gusts that caused the aircraft to drift from
the pre-specified flight path.
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Fig 3. Orthomosaics generated from aerial images collected with the integrated RGB sensor of a Phantom 4 Pro at research ponds at Auburn University’s
E.W. Shell Fisheries Center. Panel labels (a-d) correspond with columns in Table 1. Water sample collection locations are shown as black dots and GCP
locations are shown as white dots.
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Image processing
Prior to photogrammetric processing, Survey3W NGB JPEG

images were combined with GPS-tagged RAW images using
the MAPIR Camera Control software to create a TIFF file with
all metadata included (MAPIR CAMERA 2020). Georeferenced
Survey3W NGB images were then calibrated based on images
of the MAPIR Calibration Target V2 collected immediately
before and after UAS flights.

The Pix4Dmapper software was utilized for photogrammetric
processing of the images from each sensor. A camera profile
had to be added to Pix4Dmapper based on manufacturer speci-
fications for the Survey3W NGB sensor. The Survey3W NGB,
Phantom 4 RGB, and Phantom 4 Pro RGB cameras capture
images by scanning the scene rapidly (i.e., rolling shutter),
which often causes aerial image distortion or warping. To cor-
rect for rolling shutter effects, the rolling shutter correction set-
ting was enabled for these sensors on the Pix4Dmapper
software. The Parrot Sequoia monochrome sensors (multispec-
tral) employ a global shutter, which captures the entire frame
simultaneously; therefore, the rolling shutter correction was not
necessary. GCP GPS data collected prior to flights were used to
georeference images to improve spatial accuracy. Reflectance
values for the Parrot Sequoia multispectral sensor were radio-
metrically calibrated based on images of the Parrot Sequoia
radiometric calibration target collected immediately before and

after UAS flights. Point cloud densification, digital surface
models (DSM), orthomosaics, and reflection map generation for
all the sensors were processed on Pix4Dmapper. Orthomosaics
were generated by Pix4Dmapper by calculating the weighted
average of the pixels in the original images. Calibrated
orthomosaics for the four individual sensors were exported to
ArcGIS Pro 2.6 for spectral calculations.

Post-processing was successful for most UAS flights, with
the exception of flights 2 and 3. During these flights, incom-
ing storms generated wind gusts that destabilized the aircraft
causing it to tilt and shift from the pre-specified flight plan
leading to image tie point generation failure in some areas and
causing gaps in the final orthomosaic (Fig. 2). The ort-
homosaic from flight 3 has visible banding, which is due to
solar reflection as this flight had to be postponed to later in
the day due to inclement weather. Water samples were not
collected from ponds that had visible shadows at the time of
aerial flights and water sample collection, except for one pond
in flight 4 (Fig. 3) that was partially affected by shadows in the
opposite corner of the water sampling location.

Vegetation indices
The 26 vegetation indices (i.e., band ratio algorithms) cal-

culated in this study are specified in Table 3. Vegetation index
calculations were performed on ArcGIS Pro using the Raster

Fig 4. Orthomosaics generated from aerial images collected with the integrated RGB sensor of a Phantom 4 Pro at Auburn University’s Jule Collins Smith
Museum of Fine Arts pond. Panel labels (a-c correspond with columns in Table 1. Water sample collection locations are shown as black dots and GCP
locations are shown as white dots. GCP data were not collected for flights 9 and 10.
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Calculator Tool by averaging the nine pixels around and
including the sample location for each band of the calibrated
orthomosaic for each sensor. Additional information regarding
vegetation index development and original citations can be
found in the Supporting Information Table S1.

Water sample collection and analyses
Seventy water samples were collected from 54 ponds that

varied widely in their appearance, with some clear ponds and
others containing suspended sediments, suspended algae,
and/or thick cyanobacterial scum. The inclusion of clear and
high sediment ponds was essential to ensure the sensors and
vegetation indices were effective in a variety of systems, not
just productive ponds. All ponds had mud substrates with lim-
ited benthic macrophyte cover, therefore noise caused by mac-
rophyte Chl a was not considered in this study. Multiple
water samples were collected and processed from several areas
within larger ponds to account for spatial heterogeneity due
to wind and aquaculture aerators pushing buoyant cyano-
bacteria to a localized section of the pond. All water samples
were collected immediately after UAS flights to ensure they
were representative of aerial images. Secchi depth (m) and
physical water parameters, such as temperature, conductivity,
and pH, were recorded using a handheld YSI ProDSS handheld
multiparameter water quality meter. Water samples were col-
lected using a rigid tube sample up to the Secchi depth of the
sample site (average 16.11 cm; range 0–75 cm). Surface sam-
ples were collected from areas where the Secchi depth was
<10 cm. A known volume of well-mixed samples was filtered
through Pall A/E filters and stored frozen in the dark for later
algal pigment extraction. Chl a samples were measured to esti-
mate algal abundance using a Turner Designs Trilogy fluorom-
eter with non-acidification chlorophyll module after a 24 h
extraction in 90% aqueous ethanol in the dark at 4�C (Sartory
and Grobbelaar 1984). Phycocyanin concentrations were mea-
sured to estimate cyanobacterial abundance using a Turner
Designs Trilogy fluorometer with an orange module after
grinding, extracting each filter in a 50 mM phosphate buffer
in darkness for 4 h, centrifuging, and filtering (<0.2 μm) each
sample (Kasinak et al. 2015). All water samples were run in
duplicates and included blank controls.

Primary productivity varied among the ponds sampled
(Supporting Information Table S2). Chl a concentrations
ranged from 3 to 3090 μg L�1 (average 293.49 μg L�1) and
phycocyanin concentrations ranged from 0 to 17,210 μg L�1

(average 943.5 μg L�1). High Chl a and phycocyanin concen-
trations are common in eutrophic and hypereutrophic sys-
tems, and some samples included a thick Microcystis sp. scum
that was very dense, resulting in the extremely high pigment
concentrations measured. Large ponds, such as the aesthetic
pond sampled in flights 8–10 (Fig. 4), that contained surface
scum were sampled from areas with and without scum to
account for spatial variation within the pond. Samples from
the same pond were treated individually; therefore, each sam-
ple represented a unique vegetation index value within the
data set. Water samples were collected based on water trans-
parency (measured as Secchi depth) to ensure the Chl a and
phycocyanin samples represented the water column layer visi-
ble from aerial images.

Table 2. Description of the two UASs utilized in this study. Each
UAS composed of the unoccupied aerial vehicle (UAV) itself, as
well as its integrated visible wavelength red, green, blue (RGB)
camera, and onboard multispectral sensor.

Modified
multispectral UAS

Multiband
multispectral UAS

UAV model DJI Phantom 4 DJI Phantom 4 Pro

Type Quadcopter Quadcopter

Vertical position

accuracy

� 0.5 m � 0.5 m

Horizontal position

accuracy

� 1.5 m � 1.5 m

Max flight time � 28 min � 30 min

Max speed 20 m s�1 45 m s�1

Estimated payload

capacity

� 462 g � 462 g

Diagonal length 350 mm 350 mm

Weight with

batteries

1380 g 1388 g

Retail value $1500 $1500

RGB camera DJI Phantom 4 RGB
DJI Phantom 4

Pro RGB

Field of view 94� 20 mm 84� 8.8 mm/24 mm

Image size 4000 � 3000 pixels 5472 � 3648 pixels

Spatial

resolution

3.4 cm/pixel 80 m

altitude

2.6 cm/pixel 80 m

altitude

Effective pixels 12.4 M 20 M

Focal length 20 mm 24 mm

Onboard sensor
MAPIR

Survey3W Parrot Sequoia

Horizontal field of

view

87� 19 mm 62�

Image size 4032 � 3024 pixels 1280 � 960 pixels

Spatial resolution 5.5 cm/pixel 120 m

altitude

11 cm/pixel 120 m

altitude

Focal length 3.37 mm 3.98 mm

Lens type Non-fish eye Non-fish eye

Weight 75.4 g 90 g

Dimensions 41 � 59 � 25 mm 75 � 59 � 3 mm

Retail value $400 $3500
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Data analysis
Chl a and phycocyanin data were log-transformed (base

10) prior to statistical analysis to reduce heteroscedasticity
that is common with water quality data that span large ranges.
The linear relationship between the two pigments (Chl a and

phycocyanin) and the vegetation index values generated from
each sensor were determined by calculating Pearson correlations
(significant relationship when p < 0.05; Schober et al. 2018). All
statistical analyses were done using the stats package in the
open-source statistical software RStudio (RStudio Inc., MA, USA).

Table 3. Vegetation indices calculated from DJI Phantom 4 and Phantom 4 Pro RGB sensors (RGB), MAPIR Survey3W NGB modified
multispectral sensor (NGB), and Parrot Sequoia multiband multispectral sensor (multi) imagery.

Vegetation index Formula Sensor

2-Band Enhanced Vegetation Index

(EVI2)

2.5((NIR – R)/(NIR + 2.4 * R + 1)) Multi

Blue Normalized Vegetation Index

(BNDVI)

(NIR � B)/(NIR + B) NGB

Color Index of Vegetation Extraction

(CIVE)

0.441 * R � 0.881 * G + 0.385 * B

+ 18.787

RGB

Difference Vegetation Index (DVI) NIR � R Multi

Enhanced Normalized Difference

Vegetation Index (ENDVI)

((NIR + G) � (2 * B))/((NIR + G)

+ (2 * B))

NGB

Excess Green Index (EXG) 2 * G � R � B RGB

Excess Green Minus Excess Red (ExGR) ExG � 1.4 R � G RGB

Green Chlorophyll Index (CiGreen) (NIR/G) � 1 Multi and NGB

Green Normalized Difference Vegetation

Index (GNDVI)

(NIR � G)/(NIR + G) Multi and NGB

Green–Red Ratio Index (GRRI) G/R Multi and RGB

KIVU (B � R)/G RGB

Modified Simple Ratio Red-Edge (MSRre) (NIR/RE � 1)/√(NIR/RE + 1) Multi

Modified Single Ratio (MSR) (NIR/R) � 1/(√NIR/R + 1) Multi

Normalized Difference Red-Edge Index

(NDRE)

NIR � RE/NIR + RE Multi

Normalized Difference Vegetation Index

(NDVI)

(NIR � R)/(NIR + R) Multi

Normalized Difference Vegetation

Structure Index (NDVSI)

(NIR � [R + G]0.5)/(NIR + [R + G] 0.5) Multi

Normalized Green-Blue Difference Index

(NGBDI)

G � B/G + B NGB and RGB

Normalized Green-Red Difference Index

(NGRDI)

(G � R)/(G + R) Multi and RGB

Ratio Normalized Difference Vegetation

Index (RNDVI)

((NIR � R)/(NIR + R)) * NIR/R Multi

Ratio Vegetation Index (RVI or SR) NIR/R Multi

Red Green Blue Vegetation Index

(RGBVI)

G2 � R � B/G2 + R � B RGB

Red-Edge Chlorophyll Index (CiRedEdge) (NIR/RE) � 1 Multi

Red-Green Ratio Index (RGRI) R/G Multi and RGB

Visible Atmospherically Resistant Index

(VARIgreen)

(G � R)/(G + R � B) RGB

Visible Band Difference VI (VDVI) (2 * G � R � B)/(2*G + R + B) RGB

Vegetativen (VEG) G/(Ra*B[1�a]), a = 0.667 RGB

B, blue; G, green; NIR, near-infrared; R, red; RE, red-edge.
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Assessment
The four sensors and vegetation indices varied greatly in

their ability to estimate total phytoplankton and
cyanobacterial abundance (Tables 4 and 5; Supporting Infor-
mation Fig. S1). RGB sensors on commercial UASs provide a
cost-effective tool for monitoring photosynthetic activity.
Despite differences in resolution, the 12.4 M Phantom 4 and
20 M Phantom 4 Pro RGB sensors generated similar vegetation
index values for both Chl a and phycocyanin. Of the 12 vege-
tation indices calculated from the two RGB sensors, the Color
Index of Vegetation Extraction (CIVE) generated the best esti-
mates of Chl a concentration for the aerial images collected
from the Phantom 4 (r2 = 0.31, p < 0.0001) and Phantom
4 Pro (r2 = 0.35, p < 0.0001; Table 4). CIVE was originally
developed to differentiate between vegetation and soil to esti-
mate crop growth without the need to measure near-infrared
wavelengths (Kataoka et al. 2003), and it is not typically
included in UAS aquatic ecosystem monitoring studies. Both
RGB sensors were more sensitive to Chl a than phycocyanin.

The Green–Red Ratio Index (GRRI) and Visible Atmospheri-
cally Resistant Index (VARIgreen) vegetation indices were the
best predictors of phycocyanin concentration (Table 5),
though these correlations may be an artifact of Chl a content
within cyanobacterial cells, as GRRI was also closely related to
Chl a. Several studies have utilized RGB UAS sensors for map-
ping coastal floating green tides (Xu et al. 2017), attached
green algae (Xu et al. 2018), benthic cyanobacterial mats
(Bollard-Breen et al. 2015), and nuisance filamentous green
algae (Flynn and Chapra 2014). For example, Xu et al. (2018)
calculated the Normalized Green-Blue Difference Index
(NGBDI), Normalized Green-Red Difference Index (NGRDI),
Visible Band Difference Vegetation Index (VDVI), and Excess
Green Index (EXG) indices from RGB UAS imagery to identify
green algae growing on rafts and found that NGRDI generated
the most accurate results. These findings are consistent with
our results, as of the four vegetation indices tested by Xu
et al. (2018), NGRDI was closely related to both Chl a and
phycocyanin. RGB UASs are primarily used for qualitative

Table 4. Correlation analysis between log-transformed Chl a concentrations (μg L�1) and vegetation index values derived from UAS
images captured with a DJI Phantom 4 integrated RGB camera, DJI Phantom 4 Pro integrated RGB camera, a MAPIR Surve3 NGB sensor,
and a Parrot Sequoia multispectral sensor. n = 70.

Phantom 4 RGB Phantom 4 Pro RGB Survey3W NGB Parrot Sequoia multispectral

r2 p value r2 p value r2 p value r2 p value

BNDVI — — — — 0.00 0.60 — —

CiGreen — — — — 0.01 0.33 0.67 <0.0001

CIRedEdge — — — — — — 0.02 0.25

CIVE 0.31 <0.0001 0.35 <0.0001 — — — —

DVI — — — — — — 0.76 <0.0001

ENDVI — — — — 0.02 0.22 — —

EVI2 — — — — — — 0.79 <0.0001

EXG 0.29 <0.0001 0.33 <0.0001 — — — —

ExGR 0.11 0.006 0.06 0.04 — — — —

GNDVI — — — — 0.00 0.77 0.68 <0.0001

GRRI 0.231 <0.0001 0.28 <0.0001 — — 0.32 <0.0001

KIVU 0.01 0.32 0.08 0.02 — — — —

MSR — — — — — — 0.75 <0.0001

MSRre — — — — — — 0.02 0.25

NDRE — — — — — — 0.02 0.27

NDVI — — — — — — 0.79 <0.0001

NDVSI — — — — — — 0.77 <0.0001

NGBDI 0.04 0.10 0.02 0.23 0.00 0.99 — —

NGRDI 0.30 <0.0001 0.28 <0.0001 — — 0.30 <0.0001

RGBVI 0.12 0.003 0.20 0.0001 — — — —

RGRI 0.30 <0.0001 0.27 <0.0001 — — 0.28 <0.0001

RNDVI — — — — — — 0.45 <0.0001

RVI — — — — — — 0.61 <0.0001

VARIgreen 0.31 <0.0001 0.26 <0.0001 — — — —

VDVI 0.25 <0.0001 0.24 <0.0001 — — — —

VEG 0.02 0.24 0.12 0.003 — — — —
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rather than quantitative assessment of CyanoHABs, but the
low cost and ease of use of RGB sensors warrants further
research.

Vegetation index values generated from the modified mul-
tispectral MAPIR Survey3W NGB sensor indicate that it is not
reliable for quantifying phytoplankton abundance. Of the five
vegetation indices calculated, the Enhanced Normalized Dif-
ference Vegetation Index (ENDVI) was the best predictor of
both Chl a (r2 = 0.02, p = 0.22; Table 4) and phycocyanin
(r2 = 0.12, p = 0.005; Table 5). ENDVI was designed to inflate
the Chl a reflection values by combining reflectance from
near-infrared and green wavelengths (MaxMax 2015). Blue
Normalized Vegetation Index (BNDVI) values generated from
modified multispectral NGB sensors have been used for moni-
toring cyanobacterial buoyant packed cell volume (Van der
Merwe and Price 2015). BNDVI was not significantly corre-
lated with Chl a or phycocyanin in our study, potentially due
to the high cyanobacterial densities in our systems, as BNDVI

can become saturated and less reliable as buoyant packed cell
volume increases.

Aerial images collected with the Parrot Sequoia multiband
multispectral sensor generated the best estimates of Chl a and
phycocyanin of the four sensors. Of the 15 vegetation indices
calculated from multiband multispectral aerial images, Differ-
ence Vegetation Index (DVI), 2-Band Enhanced Vegetation
Index (EVI2), Normalized Difference Vegetation Index (NDVI),
and Normalized Difference Vegetation Structure Index
(NDVSI) were highly correlated to Chl a concentration
(Table 4). NDVI was originally developed for monitoring ter-
restrial vegetation using satellite remote sensors (Rouse
et al. 1974). While satellite NDVI values are often distorted by
atmospheric disturbances and cloud cover, UAS images are
collected at a lower altitude which decreases atmospheric
effects (Choo et al. 2018). Currently, NDVI is one of the most
measured vegetation indices for precision agriculture, and it
provided the best estimate of Chl a (r2 = 0.79, p < 0.0001,

Table 5. Correlation analysis between log-transformed phycocyanin concentrations (μg L�1) and vegetation index values derived from
UAS images captured with a DJI Phantom 4 integrated RGB camera, DJI Phantom 4 pro integrated RGB camera, a MAPIR Surve3 NGB
sensor, and a Parrot Sequoia multispectral sensor. n = 67.

Phantom 4 RGB Phantom 4 Pro RGB Survey3W NGB Parrot Sequoia Multispectral

r2 p value r2 p value r2 p value r2 p value

BNDVI — — — — 0.02 0.38 — —

CiGreen — — — — 0.01 0.56 0.64 <0.0001

CIRedEdge — — — — — — 0.08 0.03

CIVE 0.13 0.003 0.12 0.004 — — — —

DVI — — — — - - 0.54 <0.0001

ENDVI — — — — 0.12 0.005 — —

EVI2 — — — — — — 0.60 <0.0001

EXG 0.12 0.004 0.11 0.005 — — — —

ExGR 0.07 0.03 0.04 0.10 — —

GNDVI — — — — 0.00 0.86 0.64 <0.0001

GRRI 0.24 <0.0001 0.18 0.0003 — — 0.12 0.001

KIVU 0.03 0.19 0.09 0.02 — — — —

MSR — — — — — — 0.60 <0.0001

MSRre — — — — — — 0.08 0.03

NDRE — — — — — — 0.08 0.04

NDVI — — — — — — 0.59 <0.0001

NDVSI — — — — — — 0.57 <0.0001

NGBDI 0.00 0.59 0.06 0.97 0.03 0.18 — —

NGRDI 0.21 <0.0001 0.16 0.0007 — — 0.08 0.04

RGBVI 0.03 0.14 0.07 0.03 — — — —

RGRI 0.18 0.0004 0.15 0.001 — — 0.15 0.001

RNDVI — — — — — — 0.43 <0.0001

RVI — — — — — — 0.52 <0.0001

VARIgreen 0.21 <0.0001 0.17 0.0005 — — — —

VDVI 0.10 0.008 0.09 0.01 — — — —

VEG 0.01 0.33 0.07 0.03 — — — —
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Fig. 5) of all the sensor and vegetation index combinations in
this study. Multiband multispectral aerial images also gener-
ated the best estimates of cyanobacterial abundance, with the
Green Chlorophyll Index (CiGreen), Green Normalized Differ-
ence Vegetation Index (GNDVI), and NDVSI vegetation indi-
ces generating the best phycocyanin estimates of all four
sensors and vegetation index combinations (Table 5; Fig. 5).
The red-edge wavelength is included in many multispectral
sensors because it significantly improves crop health estimates
(Lu et al. 2019). However, of the 15 vegetation indices gener-
ated from the multiband multispectral sensor, vegetation indi-
ces that included the red-edge wavelength, such as the
Normalized Difference Red-Edge Index (NDRE) and Modified
Simple Ratio Red-Edge (MSRre), generated the least reliable
estimates of Chl a and phycocyanin.

Many multiband multispectral sensors are specifically
designed to record peak reflectance and absorbance character-
istics of terrestrial Chl a. Vegetation indices that included the
red and near-infrared wavelengths provided the best Chl
a and phycocyanin estimates, as near-infrared wavelengths are
reflected at a higher degree than green wavelengths. Studies
that utilized both UAS and satellites for monitoring water
quality in reservoirs also found that vegetation indices that
include the red and near-infrared wavelengths, such as the
Ratio Vegetation Index (RVI) and NDVI, performed the best
for estimating Chl a (Beck et al. 2016; Cillero Castro et al.
2020). However, measuring the near-infrared wavelength did
not necessarily generate more reliable results, as seen with the
modified multispectral Survey3W NGB sensor. The Cigreen
and GNDVI vegetation indices were both calculated from
modified and multiband multispectral sensor aerial images,
yet they vary greatly in their relationship to both Chl a and
phycocyanin (Tables 4 and 5). Differences between the sensors
could be attributed to the differences in wavelengths and
bandwidths, as well as resolution (Table 2; Fig. 1). The Sur-
vey3W NGB records near-infrared data at the 850 nm range at
a bandwidth of 30 nm, whereas the Parrot Sequoia records
near-infrared at the 790 nm range at a bandwidth of 40 nm
(Fig. 1). A study conducted by Lu et al. (2019) compared the
ability of three-band modified multispectral, multiband multi-
spectral, and hyperspectral sensors for estimating terrestrial

crop cover and found wavelengths recorded by modified mul-
tispectral sensors generate low accuracy imagery that should
be restricted to mapping rather than quantification
(Lu et al. 2019). Such discrepancies were not found between
vegetation index values generated from the two RGB sensors
and the multiband multispectral sensors (i.e., GRRI, NGRDI,
and RGRI; Tables 4 and 5). This suggests that the improved
resolution of the multispectral sensor was not as important as
the addition of the near-infrared band for estimating photo-
synthetic pigments.

Many of the vegetation indices designed for estimating
algal abundance from satellite remote sensors, including
the Floating Algae Index (FAI) generated from MODIS wave-
lengths (Hu 2009) and the Cyanobacterial Index
(CI) generated from MERIS wavelengths (Wynne et al. 2010),
require sensors that measure wavelengths most commercial
drones are not equipped to record. Some vegetation indices,
such as KIVU generated from Landsat 5 images, utilize visible
wavelength data for determining Chl a in inland aquatic eco-
systems (Brivio et al. 2001). However, KIVU was a poor mea-
sure of Chl a in our highly productive ponds (Table 4), likely
because KIVU was generated from systems with relatively low
Chl a concentrations (Brivio et al. 2001).

Discussion
Rapid quantitative measurements of cyanobacterial abun-

dance are necessary for implementing timely management
decisions, such as chemical treatments for aquaculture and
drinking water, restricting access to recreational waterbodies,
and identifying spatio-temporal patterns for forecasting. Tradi-
tional water sampling techniques provide a snapshot of
cyanobacterial abundance, ecosystem conditions, and the
presence of cyanotoxins but do not illustrate how the system
changes spatially or temporally and can be constrained by
processing times and cost. Algorithms created for satellite
remote sensing data are capable of monitoring cyanobacterial
abundance in large waterbodies, but the spatial resolution is
not fine enough for measuring smaller systems and inter-
preting satellite data requires training (Kutser 2004). There are
currently no commercially available UAS sensors designed spe-
cifically for aquatic ecosystem monitoring, as most sensors
and vegetation indices are designed for detecting terrestrial
vegetation. However, commercial sensors are easy to use,
affordable, and allow rapid whole ecosystem estimates of phy-
toplankton abundance.

The Parrot Sequoia multiband multispectral sensor yielded
the best estimates of chlorophyll and phycocyanin concentra-
tions (Fig. 5). These results are largely attributed to the inclu-
sion of the NIR wavelength, as chlorophyll and phycocyanin
reflect NIR to a higher degree than green leading to greater
spectral absorption differences (Simis and Kauko 2012). How-
ever, poor chlorophyll and phycocyanin estimates generated
from the Survey3W modified multispectral sensor highlight

Fig 5. Correlation between log-transformed chlorophyll (a) and phyco-
cyanin (b) concentrations (μg L�1) and vegetation indices derived from
UAS images captured with a Parrot Sequoia multispectral sensor.
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the importance of prioritizing measured wavelength and
bandwidth over measured index (i.e., band color) when choos-
ing a commercially available sensor. This is evident when
comparing the overlap between measured indices of the Sur-
vey3W NGB and Parrot Sequoia multispectral sensors, which
measured the same indices but generated different estimates
(Tables 4 and 5, Fig. 1). All four sensors included in this study
were more sensitive to Chl a concentrations than phycocya-
nin, likely because phycocyanin absorbs light at 620 nm,
which is not measured by most commercially available sen-
sors. Results from this study suggest multiband multispectral
sensors can be utilized for estimating phytoplankton abundance,
but further research should be conducted to determine whether
these tools can reliably differentiate between Chl a and phycocy-
anin. While more sophisticated UAS sensors (i.e., hyperspectral)
provide more reliable information of phytoplankton species
composition and abundance, hyperspectral sensors are an
impractical alternative for rapid detection of phytoplankton
abundance due to their high cost and challenging workflow
(Kislik et al. 2018). Although remote sensing imagery cannot
estimate cyanotoxins (e.g., microcystin and cylindrospermopsin)
or off-flavor compounds (e.g., geosmin and MIB), photosyn-
thetic pigment estimates based on UAS images could be instru-
mental for early detection and management of CyanoHABs.
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