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Detection of Lesions in Lettuce Caused by Pectobacterium carotovorum
Subsp. carotovorum by Supervised Classification Using Multispectral Images

D�etection de l�esions sur la laitue par Pectobacterium carotovorum, sous-
esp�ece carotovorum, au moyen d’une classification supervis�ee d’images
multispectrales

Glecia J�unia dos Santos Carmoa , Renata Castoldia , George Deroco Martinsb ,
Ana Carolina Pires Jacintoc , Nilvanira Donizete Tebaldic , Hamilton C�esar de Oliveira Charlod , and
Renan Zampirolia

aInstituto de Ciências Agr�arias, Universidade Federal de Uberlândia, Monte Carmelo, Brazil; bDepartamento de Engenharia Civil
(FECIV), Universidade Federal de Uberlândia, Monte Carmelo, Brazil; cInstituto de Ciências Agr�arias, Universidade Federal de
Uberlândia, Uberlândia, Brazil; dInstituto Federal de Educaç~ao, Ciência e Tecnologia do Triângulo Mineiro, Uberaba, Brazil

ABSTRACT
This study aimed to detect soft rot caused by Pectobacterium carotovorum subsp. carotovo-
rum in lettuce using images obtained by multispectral sensors mounted on an unmanned
aerial vehicle (UAV). A secondary objective was to identify the best sensor and determine
the optimal stage after inoculation to detect infected plants. In the field, soft rot lesions and
the agronomic traits of lettuce plants inoculated or not with the bacteria were assessed on
different days after inoculation (DAI). Classifications were made using the Support Vector
Machine (SVM) and Naive Bayes (NB) algorithms to analyze data groups consisting of spec-
tral bands, vegetation indices and a combination of bands and indices obtained from a con-
ventional visible camera and Mapir Survey3W multispectral camera, as well as agronomic
parameters. The results confirmed the possibility of pre-symptomatic detection of P. caroto-
vorum subsp. carotovorum in lettuce at the canopy level. With respect to identifying healthy
and infected lettuce plants by supervised classification, the best results were obtained at 4
and 8 DAI, especially when using the subsets derived from the Mapir Survey3W camera
(RGN sensor), for both classifiers. The subsets obtained with the conventional visible sensor
(RGB sensor) produced the best results at 20 and 24 DAI.

RÉSUMÉ

Cette �etude a pour objectif de d�etecter la pourriture molle caus�ee par Pectobacterium caro-
tovorum, sous-esp�ece carotovorum, sur la laitue �a l’aide d’images prises par des capteurs
multispectraux mont�es sur un drone (UAV). De plus, un objectif secondaire est d’identifier le
meilleur capteur et la meilleure phase apr�es l’inoculation pour d�etecter les plantes infect�ees.
Au champ, les l�esions de pourriture molle et les param�etres agronomiques des plants de lai-
tue inocul�es ou non avec la bact�erie ont �et�e �evalu�es plusieurs jours apr�es l’inoculation
(DAI). Pour les classifications, les algorithmes Support Vector Machine (SVM) et Naive Bayes
(NB) ont �et�e utilis�es pour �evaluer des groupes de donn�ees compos�es de bandes spectrales,
d’indices de v�eg�etation et de combinaison de bandes et d’indices obtenus �a partir d’une
cam�era visible conventionnelle et d’une cam�era multispectrale Mapir Survey3W, ainsi que
les param�etres agronomiques. Les r�esultats ont confirm�e la possibilit�e d’une d�etection pr�e-
symptomatique de P. carotovorum, sous-esp�ece carotovorum dans la laitue au niveau de la
canop�ee. Pour la d�etection de plants de laitue sains et infect�es par classification supervis�ee,
les meilleurs r�esultats ont �et�e obtenus �a 4 et 8 jours apr�es l’inoculation (DAI), principalement
en utilisant des sous-ensembles d�eriv�es de la cam�era Mapir Survey3W (capteur RVIR), pour
les deux classificateurs. Alors que, les sous-ensembles d�eriv�es du capteur visible convention-
nel (capteur RVB) ont montr�e les meilleurs r�esultats aux intervalles de 20 et 24 jours apr�es
l’inoculation.
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Introduction

Lettuce (Lactuca sativa) is the most economically
important leafy vegetable worldwide. In Brazil, the
number of growers and volume produced continues
to rise (Anu�ario Brasileiro de Horti&Fruti 2020 2019).

However, a number of pathogens that affect plants
from the root system to leaves can drastically reduce
crop yields. Nazerian et al. (2013) found that more
than 15% of the damage observed in lettuce in the
field, greenhouses and storage was caused by bacteria
from the genus Pectobacterium spp.

Pectobacterium carotovorum subsp. carotovorum,
the causal agent of soft rot, is considered one of the
ten most scientifically and economically important
phytobacteria (Mansfield et al. 2012); however, there
are no chemical products for its control registered in
Brazil or resistant varieties (Agrofit 2020).

The initial symptoms of the disease are wilting and
depigmentation of the older leaves. A brownish green
water-soaked lesion then develops in the inner stem,
which may progressively cause the entire plant to rot
(Colariccio and Chaves 2017), resulting in yield and
economic losses for producers. Initial symptoms are
difficult to see and, when observed, almost impossible
to control. As such, any strategy aimed at detecting
these anomalies in the early stages of development is
vitally important, since the disease is aggressive and
the growth cycle of lettuce short.

Remote sensing (RS) has a number of applications
in agriculture (Weiss et al. 2020). A review by Usha
and Singh (2013) cites several potential applications
for RS, including disease detection in crops such as
tomato, beet, cucumber and potato; measuring canopy
volume in tomato; estimating area and obtaining pro-
duction information in potato and cabbage.

The development and applications of RS for agri-
culture is due to knowledge of leaf and canopy reflect-
ance, which makes it possible to calculate vegetation
indices and, consequently, assess agronomic traits
such as nutritional status, biomass, leaf area, and
water stress (Hatfield et al. 2008), in addition to help-
ing detect and monitor plant disease (Gogoi
et al. 2018).

Several papers have reported the use of different
sensors, such as multi- and hyperspectral reflectance
sensors, RGB imaging, thermography and fluorescence
sensors, among others, to study diseases. They can be
installed on different platforms, including unmanned
aerial vehicles (UAVs) (Mahlein 2016; Maes and
Steppe 2019; Oerke 2020). However, according to
Mahlein (2016), there are still no sensors on the mar-
ket to specifically detect diseases in plants, since the

full potential of sensor-based detection has yet to be
explored. In this respect, the present study aimed to
determine the most promising sensor for the dis-
ease analyzed.

In conjunction with RS, machine learning has been
widely used in agriculture through learning models
such as classification, regression, clustering, Bayesian
and instance-based models, decision trees, artificial
neural networks and support vector machines (Liakos
et al. 2018). Thus, data processing using machine
learning can contribute to identifying diseases in
melon (Pineda et al. 2018) and sugar beet (Ozguven
and Adem 2019), separating healthy from sick leaves
in pepper (Karadag et al. 2018) and potato plants
(Fern�andez et al. 2020), investigating in potato plants
late blight physiological differences (Gold et al. 2020),
and early detection and classification of tomato virus
(Morellos et al. 2020).

In lettuce cultivation, algorithms have been used to
detect iron, zinc and nitrogen deficiency (Hetzroni
et al. 1994), assess chlorophyll content (Odabas et al.
2017), estimate nitrogen content (Jun et al. 2013, Mao
et al. 2015, Gao et al. 2015), determine the nutritional
status of plants under different irrigation and fertiliza-
tion conditions (Ren et al. 2017), analyze the effect of
water stress (Kizil et al. 2012), measure pesticide resi-
dues (Sun et al. 2018), spectral determination of cad-
mium (Xin et al. 2020), and identify and assess
microbial contamination (Rahi et al. 2020).

However, there are no studies on the use of RS
and/or machine learning to identify stem and root
diseases that affect lettuce crops, making it essential to
obtain and apply tools capable of early detection, since
this allows disease to be controlled and minimizes
economic losses.

As such, this study aimed to detect soft rot caused
by Pectobacterium carotovorum subsp. carotovorum in
lettuce using images obtained by multispectral sensors
mounted on an unmanned aerial vehicle (UAV), iden-
tify the best sensor and determine the optimal stage
after inoculation to detect sick plants based on the
multispectral images.

Material and methods

Field experiment

The experiment was conducted at the Federal
University of Uberlândia (UFU), Monte Carmelo
Campus (geographic coordinates: 18� 430 26.7727100 S,
47� 310 25.6620200 W, and altitude of 912.469m).
According to K€oppen’s classification system, climate
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in the region is wet and temperate, with hot summers
and dry winters (Embrapa 2006).

The crispy endive lettuce cultivar ‘Solaris’VR , classi-
fied as susceptible to Pectobacterium carotovorum
subsp. carotovorum isolates, was used (F�elix
et al. 2014).

Seeds were planted in 200 cell expanded polystyr-
ene trays filled with commercial pine bark-based sub-
strate. The seedlings were kept in a greenhouse
covered in clear UV-resistant plastic (150 micra) and
irrigated daily to ensure the substrate was always
moist, which is ideal for seedling development.

At 25 days after planting (DAP), the seedlings were
transplanted to five-liter plastic pots filled with soil,
and initially maintained in a greenhouse under shade
cloth. The soil used was collected from a ravine area,
sieved, limed and fertilized, in accordance with soil
analysis and crop recommendations (Fontes 1999).

The Pectobacterium carotovorum subsp. carotovo-
rum isolate UFU A7, supplied by the Plant
Bacteriology Laboratory (LABAC) of the Federal
University of Uberlândia, was used for inoculation.
The isolate was grown in bacteria screening medium
523 (Kado and Heskett 1970) for 24 h at 28 �C. The
bacterial suspension was prepared in filtered water
and adjusted in a spectrophotometer to A570 ¼ 1.8
(5� 109 UFC mL�1).

At 27 days after transplanting (DAT), 196 plants
were inoculated with 100 ml of the bacterial suspension
in the central stem region, using a disposable 1mL
syringe. After inoculation, the plants were placed in
plastic bags in a humidity chamber, for 12 hours. The
same number of plants (196) were not inoculated and
considered healthy plants for the duration of
the experiment.

Disease lesions were assessed at 4, 8, 12, 16, 20, 24
and 28 days after inoculation (DAI) using the rating
scale proposed by Ren et al. (2001), with adaptations.
Scores ranged from 1 to 8, whereby 1¼no lesions at
the inoculation site; 2¼ lesions smaller than 5mm,
3¼ lesions between 5 and 10mm, 4¼ lesions larger
than 10mm, but not reaching the leaves near the
inoculation site, 5¼ lesions larger than 10mm,

reaching the leaves near the inoculation site,
6¼ lesions larger than 10mm, reaching leaves near
and far from the inoculation site, 7¼whole plant near
death, 8¼ dead plant.

Agronomic assessments were performed in 392
plants, at the same intervals described above. At each
interval, 28 inoculated and non-inoculated plants were
evaluated to determine the chlorophyll index, using an
electronic chlorophyll meter (ClorofiLOG Falker
CFL1030), as well as plant fresh mass (kg), stem
length (cm), stem diameter (cm) and fresh root
mass (kg).

The plants were irrigated every day in the morning
and afternoon to maintain soil moisture content close
to field capacity, the ideal condition for disease
development.

Image capturing and processing

In order to obtain the images, the plants were relo-
cated to an area outside the greenhouse. The soil was
covered in black plastic (Figure 1) and the plants pro-
tected by black 40–45% shade cloth, installed 2.0m
above the ground.

On the same days as the agronomic assessments (4,
8, 12, 16, 20, 24 and 28 days after inoculation), flights
were made over the area between 12 and 1 p.m.
(period with the most sunlight), during which the
shade cloth was removed (Figure 1) so as not to inter-
fere with the images.

The images were obtained by a Phantom 4 Pro
unmanned aerial vehicle (UAV) or drone, made by
DJI (D�a-Ji�ang Innovations Science and Technology
Co.), equipped with a conventional visible camera
with channels corresponding to the red (650 nm),
green (550 nm) and blue (480 nm) (RGB) bands, full
width at half maximum (FWHM) of 10 nm and 20
megapixel resolution, as well as a Mapir Survey3W
camera with 12 megapixel resolution, channels corre-
sponding to the red (660 nm), green (550 nm) and
near infrared (850 nm) (RGN) bands and FWHMs of
40, 60 and 80 nm, respectively.

Figure 1. Arrangement of the plants studied.
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All the flights were planned using DroneDeploy#

software, which established 5 bands, an altitude of 20
meters, speed of 2m/s, front and side overlap of 75
and 70%, respectively, and a flight time of approxi-
mately 4min.

After images were captured by the RGB and RGN
sensors, mosaickings were performed for each of the
seven flights, using AgisoftPhotoScan Professional soft-
ware. This software aligns the images to find the ideal
camera position and common points to combine them,
forming a sparse point cloud. A dense point cloud was
then constructed, based on which the surface was gener-
ated using a 3D polygon mesh, producing mosaics for
each flight.

Radiometric calibration was carried out using Mapir
Camera Control (MCC) software, only for the seven
mosaics generated based on the Mapir Survey3W images.
To that end, before each flight the camera photographed
the calibration target, which had four color bands (black,
dark gray, light gray and white) of known radiance. The
model, lens and filter of the Mapir Survey3W camera
used were specified in the software, the target image of
the respective flight selected and the QR code of the tar-
get detected. This made it possible to calculate the cali-
bration values needed for the camera, and each input file
containing the mosaic was loaded. After calibration, the
calibrated mosaic file was automatically created.

Given that the radiances of objects may vary over
time and because the present study uses temporal
images, radiometric normalization of both the RGB
(digital number) and RGN (reflectance) mosaics was
carried out for spectral characterization, in accordance
with Hall et al. (1991).

The image from the last flight was used as refer-
ence in normalization because of its higher solar radi-
ation. For all of the flights, the calibration target of
the Mapir Survey3W camera (Figure 2) was posi-
tioned in the overflown area and thereby used to
extract the means of the light and dark pixel sets for
all the images, since the target’s radiance is stable.

The mean values of the digital numbers and reflec-
tances for the dark and light pixel sets in the red (R),
green (G), blue (B) and near-infrared bands (N) (RGB
and RGN bands) were manually extracted from the
reference image and other images.

Next, the following equation was used to determine
the coefficients of a linear transformation (Ponzoni et al.
2012):

Ti ¼ mi� xiþ bi (1)

where:

mi ¼ Bri � Dri
Bsi � Dsið Þ (2)

bi ¼ Dri � Bsi� Dsi � Bri
Bsi � Dsið Þ (3)

Ti ¼Digital number (RGB) and reflectance (RGN) of
the reference image; xi ¼Digital number (RGB) and
Reflectance (RGN) of the image to be normalized; Bri
¼mean of the light reference set; Dri ¼mean of the
dark reference set; Bsi ¼mean of the light set to be
normalized; Dsi ¼mean of the dark set to be normal-
ized and i¼ sensor bands studied.

In ENVI 5.1 (Environment for Visualizing Images)
software and using the Band Math tool, the equation
was applied to each image band, producing layers.
The three layers generated for each image were com-
bined into a single image with values similar to those
of the reference image.

The radiometric data (mean values of the digital
numbers and reflectances in the RGB and RGN bands,
respectively) of the 28 inoculated and 28 non-inocu-
lated plants were extracted from each mosaic, using
the region of interest (ROI) function in ENVI
5.1 software.

Calculating the vegetation indices

The mean spectral values of healthy lettuces and those
inoculated with the bacteria were used to calculate the
vegetation indices in the visible and near-infrared
(NIR) spectra (Table 1), which are sensitive to bio-
physical and biochemical variations in plants.

Supervised classification

In order to differentiate between healthy and infected
lettuces, supervised classification was performed based
on the Naive Bayes (NB) probabilistic algorithm and
support vector machine (SVM) nonparametric classi-
fier, defined as an SMO (Sequential Minimal
Optimization) algorithm, implemented in Weka 3.9.4
software (Waikato Environment for Knowledge
Analysis). Both classifiers have been used in previous
studies involving plant diseases (Tetila et al. 2017;
Mondal et al. 2017; Poblete et al. 2020; Abdu
et al. 2020).

There are several applications of SVMs in remote
sensing (Mountrakis, Im and Ogole 2011). The input
data are nonlinearly mapped into a high-dimensional
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space, where the support vectors define a hyperplane,
making the data linearly separable (Cortes and Vapnik
1995). To that end, the PUK (Pearson VII universal
kernel) function with Sigma (r) ¼ 1, Omega (x) ¼ 1
and penalty parameter C¼ 1 were used, after previous
tests. On the other hand, Naive Bayes learning is
based on the Bayes’ theorem, which assumes features
to be independent and calculates the probabilities of
their belonging to different classes (Berrar 2018).

Inserted into the input dataset were the classes
obtained in the assessment, mean values of the digital
numbers and reflectances of the RGB and RGN bands,
respectively, the vegetation indices calculated and
agronomic variables analyzed.

For classification in Weka software, the non-inocu-
lated (healthy) plants were considered class 0 and all
the infected plants, with their different levels of dis-
ease obtained in the field, class 1.

The subsets selected for classification at each
assessment time were as follows: 1- only bands (for
each camera), 2- only indices and 3- bands and indi-
ces combined. The agronomic variables were classified
separately to compare with the image-based classifica-
tions. Each subset was classified using 70% of the data
for training and 30% for testing, for both SVM and
NB. Therefore, it should be noted that for the valida-
tions of the various classifications, 20 training and 8
validation samples were used for each class. It is

Figure 2. Calibration target of the Mapir Survey3W camera to extract the mean values of dark and light pixel sets.
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acknowledged that this is lower than optimal in terms
of validation sample sizes, and therefore makes the
classification results more sensitive to being over-esti-
mated and under-estimated, e.g., the various results at
OA 100% k¼ 1, while other results are likely lower in
magnitude compared to what would be expected with
larger validation sample sizes. It is also noted that the
term “accuracy” in this paper refers to classification
agreements amongst these various smaller sample size
validation sets, and therefore should not be inter-
preted as direct accuracy estimates.

The performance of the algorithms was evaluated
using overall accuracy (OA), calculated by the ratio
between correctly classified observations and the
Kappa coefficient (Equation 14), which was also used
by Wang et al. (2020a).

Kappa ¼ p0 � pe
1� pe

(14)

Where p0 is an observational probability of agreement
and pe a hypothetical expected probability
of agreement.

Prior to classification, the mean values of the spec-
tra were analyzed and the spectra deemed most
decisive were graphically illustrated based on those
obtained from infected and healthy canopies.

Results

After prior analysis of the mean spectra for the differ-
ent assessment times, those obtained from the

multispectral sensor at 8 and 16 DAI for infected and
non-infected plants (Figure 3) were prioritized. At 8
DAI, plants had not yet displayed visible symptoms of
the disease, making agronomic intervention possible
without compromising the crop; and at 16 DAI initial
symptoms were visible, with plants exhibiting an
intermediate level of damage.

Analysis of the behavior of spectra for healthy and
infected plants at 8 DAI showed a greater difference
between near-infrared reflectance values (Figure 3),
demonstrating that cell structures in these two condi-
tions differ and are decisive in differentiating between
spectra, evident in the behavior observed for multi-
spectral classification (Table 2). However, this was not
possible with the RGB camera for the same period

Table 1. Vegetation indices calculated based on wavelengths of the visible (R, G and B) and near-infrared (NIR) spectra of lettu-
ces inoculated or not with Pectobacterium carotovorum subsp. carotovorum.
Vegetation Index Equation Application Reference

Normalized Green Red
Difference Index

NGRDI ¼ ðB550�B650Þ
ðB550þB650Þ (4) Leaf area index (LAI),

biomass
(Tucker 1979; Hunt

et al. 2005)
Carotenoid Reflectance Index 1 CRI1 ¼ ð1Þ

ðB480Þ �
ð1Þ

ðB550Þ (5) Carotenoid content (Gitelson et al. 2002)

Photochemical
Reflectance Index

PRI ¼ ðB480�B550Þ
ðB480þB550Þ(6)

Photosynthesis efficiency (Gamon et al. 1992;
Garbulsky et al. 2011)

Triangular Greenness Index TGI ¼ B550 � 0:39� B650 � 0:61� B480 (7) Chlorophyll,
Nitrogen management,
Canopy area

(Hunt et al. 2011; Mckinnon
and Hoff 2017; Star�y
et al. 2020)

Green Leaf Index GLI ¼ 2�B550�B650�B480ð Þ
2�B550þB650þB480ð Þ (8) Biomass (Louhaichi et al. 2001;

Ballesteros et al. 2018)
Normalized Difference

Vegetation Index
NDVI ¼ ðB850�B660Þ

ðB850þB660Þ (9) Biomass, LAI, yield and
photosynthetically
active radiation

(Rouse et al. 1973; Wiegand
et al. 1991; Zarate-Valdez
et al. 2012)

Simple Ratio SR ¼ B850
B660

(10) Chlorophyll, LAI (Jordan 1969)

Green Normalized Difference
Vegetation Index

GNDVI ¼ ðB850�B550Þ
ðB850þB550Þ (11) Chlorophyll, LAI, biomass,

absorbed N and yield
(Gitelson et al. 1996; Hunt

et al. 2010; Moges
et al. 2005)

Difference Vegetation Index DVI ¼ B850 � B660 (12) Biomass, LAI (Tucker 1979; D�ıaz and
Blackburn 2003)

Modified Chlorophyll Absorption
Reflectance Index 1

MCARI1 ¼ 1:2 � 2:5 � B850 � B660ð Þ � 1:3½
� B850 � B550ð Þ�

(13)

Greater sensitivity to
LAI and less to
chlorophyll

(Haboudane et al. 2004)

Monte Carmelo, 2020.
RGB sensor channels: red ðB650Þ, green ðB550) and blue (B480). RGN sensor channels: red ðB660Þ, green ðB550) and near-infrared (B850).

Figure 3. Spectral behavior of healthy and infected lettuce
plants, calculated from mean spectrum acquired over infected
and healthy canopies as a function of the number of days
after inoculation (DAI).
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because pigment-related symptoms were not yet vis-
ible (Table 2).

At 16 DAI, infected plants showed greater reflect-
ance in the red band (52.77) and less in the NIR band
(50.97). However, the difference in the red band refec-
tance between healthy and infected plants was around
30% greater than that observed at 8 DAI (Figure 3),
demonstrating its relationship with plant
pigmentation.

The difference in reflectance between healthy and
infected plants for the NIR band was 240% lower at
16 DAI that at 8 DAI (Figure 3), indicating a weaker
relationship with cell structure.

At 16 DAI, plants showed visible symptoms of dis-
ease, which may explain why the multispectral sensor
generally produced lower overall accuracy and Kappa
coefficient values, and as such, the subsets obtained
from the RGB showed the best performance (Table 2).

For the aforementioned assessment times, the stress
caused by the bacteria resulted in a slight decline in
most of the agronomic parameters evaluated. Lower
average values were recorded for root length, plant
fresh mass, stem diameter and chlorophyll content in
infected plants at 8 DAI, and for the last three param-
eters at 16 DAI. Average fresh root mass was the
same for both assessment times (Table 3).

The radiometric data and agronomic parameters of
healthy and infected plants were classified by two
machine learning algorithms for all seven assessment
times (Table 2). Based on classification, overall accur-
acy varied for the SVM and NB classifiers from 29.41
to 100%, and the Kappa coefficient from �0.42 to 1
for SVM and �0.44 to 1 for NB (Table 2).

At 4 DAI, the SVM classifier obtained 100% overall
accuracy and a Kappa coefficient of 1 for the subsets
RGN and indices; R, N, NDVI, SR and GNDVI; and
R, G, DVI and MCARI1. For the NB classifier, the
first two subsets also exhibited 100% overall accuracy
and a Kappa coefficient of 1, that is, perfect agree-
ment (Wang et al. 2020b), demonstrating the ability
to differentiate between healthy and infected plants.
The remaining multispectral subsets displayed almost
perfect agreement (k¼ 0.88), except for RGN bands.

Table 2. Supervised classification of healthy and infected plants at different assessment times.

Subsets classified

4 DAI 8 DAI 12 DAI 16 DAI

SVM NB SVM NB SVM NB SVM NB

OA K OA K OA K OA K OA K OA K OA K OA K

RGN 88.24 0.77 88.24 0.77 100 1 100 1 82.35 0.65 76.47 0.53 64.71 0.28 64.71 0.29
Indices 94.12 0.88 94.12 0.88 82.35 0.64 82.35 0.64 70.59 0.40 64.71 0.27 52.94 0.05 58.82 0.17
RGN and indices 100 1 100 1 100 1 94.12 0.88 76.47 0.53 76.47 0.53 58.82 0.17 58.82 0.17
R, N, NDVI, SR, GNDVI 100 1 100 1 94.12 0.88 88.24 0.76 58.82 0.17 64.71 0.28 58.82 0.17 58.82 0.17
R, G, DVI, MCARI1 100 1 94.12 0.88 100 1 100 1 88.24 0.76 76.47 0.53 52.94 0.06 52.94 0.06
RGB 76.47 0.52 58.82 0.17 82.35 0.65 76.47 0.53 64.71 0.30 58.82 0.19 94.12 0.88 94.12 0.88
Indices 76.47 0.52 64.71 0.28 82.35 0.65 82.35 0.65 70.58 0.41 58.82 0.20 88.24 0.76 88.24 0.76
RGB and indices 76.47 0.52 76.47 0.52 82.35 0.65 76.47 0.53 70.59 0.41 58.82 0.20 94.12 0.88 88.24 0.76
R, G, NGRDI, GLI, TGI 76.47 0.52 76.47 0.52 82.35 0.65 82.35 0.65 82.35 0.65 58.82 0.20 88.24 0.76 82.35 0.64
G, B, CRI1, PRI 70.59 0.40 70.59 0.40 82.35 0.65 64.71 0.28 70.59 0.42 58.82 0.19 88.24 0.76 88.24 0.76
Agronomic parameters 88.24 0.77 82.35 0.65 94.12 0.88 94.12 0.88 82.35 0.65 88.24 0.77 64.71 0.28 58.82 0.17

Subsets classified

20 DAI 24 DAI 28 DAI

SVM NB SVM NB SVM NB

OA K OA K OA K OA K OA K OA K

RGN 76.47 0.53 76.47 0.53 100 1 100 1 64.71 0.31 58.82 0.19
Indices 47.06 �0.06 47.06 �0.04 94.12 0.88 88.24 0.76 47.06 �0.04 58.82 0.20
RGN and indices 76.47 0.53 76.47 0.53 100 1 100 1 47.06 �0.06 58.82 0.20
R, N, NDVI, SR, GNDVI 76.47 0.53 76.47 0.53 100 1 100 1 47.06 �0.06 58.82 0.20
R, G, DVI, MCARI1 76.47 0.53 76.47 0.53 100 1 100 1 52.94 0.07 58.82 0.19
RGB 100 1 94.12 0.88 100 1 100 1 29.41 �0.42 29.41 �0.44
Indices 100 1 82.35 0.64 82.35 0.64 100 1 35.29 �0.29 35.29 �0.29
RGB and indices 100 1 82.24 0.76 100 1 100 1 41.18 �0.18 41.18 �0.18
R, G, NGRDI, GLI, TGI 88.24 0.77 94.12 0.88 100 1 100 1 41.18 �0.18 41.18 �0.18
G, B, CRI1, PRI 100 1 88.24 0.76 100 1 94.12 0.88 35.29 �0.31 35.29 �0.33
Agronomic parameters 82.35 0.64 82.35 0.64 88.24 0.76 88.24 0.76 76.47 0.53 70.59 0.41

DAI: Days after inoculation; SVM: Support Vector Machine; NB: Naive Bayes; OA: Overall Accuracy; K: Kappa Index.

Table 3. Mean values of agronomic parameters at 8 and
16 days after inoculation (DAI).

Agronomic parameters

8 DAI 16 DAI

Healthy Infected Healthy Infected

Root length (cm) 24.91 23.61 16.25 29.09
Plant fresh mass (kg) 0.20 0.14 0.18 0.14
Fresh root mass (kg) 0.02 0.02 0.02 0.02
Stem diameter (mm) 15.22 13.42 15.90 13.88
Chlorophyll index 16.83 16.56 17.34 17.08
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The visible sensor subsets showed slight (k¼ 0.17) to
moderate agreement (k¼ 0.52) and the agronomic
parameters substantial agreement (k¼ 0.77 and 0.65
for the SVM and NB classifiers, respectively) (Wang
et al. 2020b) (Table 2).

At 8 DAI, the subsets RGN and indices; R, G, DVI
and MCARI1; and RGN bands obtained by the SVM
classifier showed 100% accuracy (k¼ 1), which was
also observed for the last two subsets with the NB
algorithm (Table 2). The remaining multispectral sub-
sets obtained substantial (k¼ 0.64 and 0.76) and
almost perfect agreement (k¼ 0.88). Most of the vis-
ible sensor subsets demonstrated substantial agree-
ment (k¼ 0.65) and the agronomic parameters almost
perfect agreement (k¼ 0.88) (Table 2).

At 12 DAI, accuracy and the Kappa coefficient
declined for both classifiers in the multispectral and
visible sensor subsets. Among the multispectral sub-
sets, only the RGN (k¼ 0.65) and R, G, DVI and
MCARI1 bands (k¼ 0.76) obtained with the SVM
classifier and the visible sensor subsets R, G, NGRDI,
GLI and TGI (k¼ 0.65) exhibited substantial agree-
ment (k¼ 0.61 a 0.8) (Wang et al. 2020b), also
observed for the agronomic parameters (Table 2).

The global accuracy and Kappa values of the multi-
spectral subsets for both SVM and NB were lower at
16 DAI (k¼ 0.05–0.29) than 12 DAI, unlike those of
the visible sensor subsets, which increased significantly
at 16 DAI. This could be because lesions were larger
than 10mm at this time, affecting leaves close to the
inoculation site, which may have increased overall
accuracy and Kappa values (Table 2).

The best classifications at 16 DAI were for RGB
bands and; RGB and indices obtained by SVM, with
k¼ 0.88 (almost perfect agreement), RGB bands for
the NB classifier (Table 2), although the remaining
subsets showed substantial agreement (k¼ 0.61–0.8).
Classification of the agronomic parameters showed
fair agreement (k¼ 0.28) for SVM and slight
(k¼ 0.17) for NB (Wang et al. 2020b), that is, worse
classification than that of the remaining intervals.

At 20 DAI, RGB bands; indices; RGB and indices;
and G, B, CRI1 and PRI classifier exhibited 100%
overall accuracy and k¼ 1 (perfect agreement) for the
SVM classifier, but substantial and almost perfect
agreement for the NB algorithm (Table 2). By con-
trast, most of the multispectral subsets displayed mod-
erate agreement (k¼ 0.53) and the agronomic
parameters substantial agreement (k¼ 0.64).

In general, the best results were recorded at 24
DAI for both the multispectral and visible sensors.
With the exception of the subset of multispectral

indices, the remainder, by one or both classifiers,
obtained 100% overall accuracy (k¼ 1), corresponding
to perfect agreement (Wang et al. 2020b), whereas the
agronomic parameters showed substantial agreement
(k¼ 0.76) (Table 2).

Finally, Kappa coefficients below zero were more
common at 28 DAI, that is, poor agreement, while agro-
nomic parameters performed better and exhibited mod-
erate agreement (k¼ 0.41–0.6) (Wang et al. 2020b).

Discussion

Some multispectral subsets enabled early detection of
disease (at 4 and 8 DAI), using both classifiers
(Table 2). This occurred before the characteristic symp-
toms of the disease were visible and without the need to
destroy the plants, or, in the case of visual symptoms,
present at 16 DAI, when the lesions caused by the bac-
teria were larger than 10mm and had reached the leaves
near the inoculation site. This demonstrates that
although the disease is invisible to the naked eye, the
presence of the bacteria can cause physiological changes
that alter the plant’s reflectance, which provided good
classification results at the first and second assessment.

This corroborates the findings of West et al.
(2010), who reported that plant diseases can cause
physiological modifications in the rate of transpir-
ation, leaf shape and color, as well as changes in can-
opy morphology and density (West et al. 2010),
thereby altering plant reflectance and allowing faster
disease classification using multispectral images. In
the present study, this change was due to the action
of pectinolytic enzymes (pectinases) produced by
pathogen. These enzymes degrade the pectic substan-
ces present mainly in the middle lamella, resulting in
separation and death of cells, that is tissue maceration
and, therefore in the destruction of structural integrity
(Pascholati and Dalio 2018).

At 4 DAI, classifications of RGN and indices; R, N,
NDVI, SR and GNDVI and; R, G, DVI and MCARI1
showed 100% overall accuracy (k¼ 1) (Table 2), that
is, early detection of disease. Abdollahi et al. (2004)
reported a decline in chlorophyll a and b content 42 h
after in vitro inoculation of pear shoots with Erwinia
amylovora. However, early detection related to
changes in plant pigmentation is less common, so
much so that at 4 DAI, classifications obtained with
the visible sensor (RGB) were less accurate than those
of the multispectral sensor. In other words, pigments
sensitive to the visible spectrum were not yet decisive
in distinguishing between the cell structure of healthy
and infected plants (Table 2).
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Thus, vegetation indices may be more correlated with
biomass than simply red and near-infrared measure-
ments (Jensen 2016). Combining bands and indices
(Table 2) with their previously studied applications
(Table 1) may have contributed to the superior perform-
ance of the classifiers at 4 DAI for the multispectral
camera (Table 2).

The RGN bands, RGN and indices; and R, G, DVI,
MCARI1 subset achieved 100% (k¼ 1) overall accur-
acy at 8 DAI (Table 2). In infected plants, mean spec-
tra of the red and green bands increased and the NIR
band decreased (Figure 3). This corroborates the find-
ings of Ren et al. (2017), who observed an increase in
the blue, green and red intervals of typical reflectance
spectra for unhealthy lettuce, as well as a sharp
decline in the NIR band.

Sandmann et al. (2018) studied lettuce seedlings
inoculated with Rhizoctonia solani and also obtained a
higher average value for the red band and lower for
the NIR band, as observed in the present study at 8
DAI (Figure 3).

Although the average root fresh mass of healthy
and infected plants was the same in our study
(Table 3), Osco et al. (2019) found that the root dry
weight of lettuce plants showed the highest correlation
with the NIR interval.

Bagheri (2020) used UAVs to detect pear trees
infected with Erwinia amylovora and considered the
NIR, red and green bands adequate; however, since
there are no visible symptoms in the first stage of
infection, the NIR band can be used for early detec-
tion because the internal structure of the leaf alters
light absorption. Similarly, Chen et al. (2020) reported
that spectral data in the NIR interval can help identify
peanut plants in the early stages of bacterial wilt
(Ralstonia solanacearum), when the xylem is slightly
affected while the leaves are still green. Thus, based
on infrared reflectance, the results obtained at 8 DAI
are believed to be more reliable for differentiating
between healthy and infected plants (Table 2).

The vegetation indices obtained with the multispec-
tral sensor (NDVI, DVI, GNDVI, SR and MCARI1)
also contributed to detecting the presence or absence
of disease in plants (Table 1). This corroborates the
findings of Sandmann et al. (2018), who recorded a
lower average NDVI value for infected lettuce seed-
lings when compared to their healthy counterparts,
and those of other studies, which demonstrated that
these indices are also related to plant diseases
(Fletcher et al. 2004; Cao et al. 2013; Zhang et al.
2018; Bagheri 2020; Abdulridha et al. 2020).

Accuracy and Kappa values declined at 12 DAI for
both sensors (Table 2), indicating that 8 DAI is the
cutoff point for early detection.

At 16 DAI, despite the difference in NIR bands
between healthy and infected plants (Figure 3), most
of the subsets exhibited slight agreement (Table 2),
possibly because the high data variability confounded
classification. At the onset of symptoms, the visible
sensor was better able to distinguish between the two
conditions, exhibiting substantial and almost perfect
agreement (Table 2).

With respect to agronomic parameters, most
related to cell structure, performed worst at 16 DAI
(k¼ 0.17 and 0.28), as observed for the multispectral
sensor at the same assessment time (Table 2).
However, at 4 and 8 DAI, agronomic parameters pro-
vided betters overall accuracy and Kappa values, in
particular at 8 DAI exhibiting almost perfect agree-
ment (k¼ 0.88) (Table 2), further demonstrating that
cell structure is decisive in early disease detection.

At 16 DAI, the RGB bands and RGB and indices
obtained the best classifications (Table 2). Similarly,
Ch�avez et al. (2012) reported that the visible interval,
particularly the blue and red bands, was capable of
detecting the initial symptoms of bacterial wilt caused
by Ralstonia solanacearum in potato plants. Thus, at
this stage, pigments may be more important than cell
structure in differentiating between infected and
healthy plants.

Osco et al. (2019) found the highest negative and
positive correlations in the red and blue bands, that
is, the spectral bands for chlorophyll a and b absorp-
tion. In the present study, there was a slight decline in
chlorophyll content, plant fresh mass and stem diam-
eter between healthy and infected plants at 16 DAI
(Table 3).

At 20 and 24 DAI, the visible sensor subsets also
stood out (OA ¼ 100%, k¼ 1), whether using bands
and indices alone or combined (Table 2). Odabas
et al. (2017) found that using RGB components in a
trained model made it possible to accurately estimate
chlorophyll content in lettuce leaves.

The indices obtained with the visible sensor, related
to chlorophyll, biomass, carotenoid content and
photosynthetic efficiency (Table 1), and also involved
in studies on plant diseases (Huang et al. 2007; Sapate
and Deshmukh 2019; Sancho-Adamson et al. 2019;
Bhandari et al. 2020), are believed to have contributed
to the good results observed at 20 and 24 DAI. The
combination of vegetation indices, based on different
wavelengths that describe different physiological
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parameters, increase the information content for auto-
matic classification and improve its accuracy (Rumpf
et al. 2010).

Thus, at 4, 8, 20 and 24 DAI, based on the subsets
classified at 100% (Table 2) with perfect agreement
and according to Wang et al. (2020b), the SVM classi-
fier was accurate at distinguishing between healthy
and infected plants. These data corroborate those
obtained by other authors, who also reported high
accuracy in classifying healthy and sick plants and
leaves using the SVM classifier (Garcia-Ruiz et al.
2013; Abu-Khalaf and Salman 2013). For the NB clas-
sifier, maximum overall accuracy and k¼ 1 were also
recorded at 4, 8 and 24 DAI (Table 2), establishing
the capacity of the algorithm. It is important to note
that both classifiers provided a larger number of cor-
rect classifications at 24 DAI. As observed here,
Karadag et al. (2018) found that the NB algorithm
was able to differentiate between healthy and sick
plants. This classifier also makes it possible to distin-
guish between disease classes (Mondal et al. 2017).

The worst results were observed at 28 DAI
(Table 2). The pathogen inoculated is a root disease
that did not manifest intensively in the aerial plants
part this study, which may explain the varying spectral
responses in the plants over time, making accurate
classification more difficult. This was also expected by
Bienkowski et al. (2019), who obtained considerably
lower R2 values when potato plants inoculated with
Pectobacterium atrosepticum were compared to those
inoculated with Phytophthora infestans and agreed
that the former pathogen acts indirectly on leaves.
Nevertheless, the authors were able to differentiate
between the spectra of healthy and pre-symptomatic
leaves and those with symptoms caused by
Pectobacterium atrosepticum, with 74.6% classification
accuracy (Bienkowski et al. 2019).

Conclusion

The results confirmed the possibility of pre-symptom-
atic detection of Pectobacterium carotovorum subsp.
carotovorum in lettuce at 4 and 8 DAI, especially
when using different subsets obtained by the multi-
spectral sensor with SVM and NB classifiers before
visible symptom onset in the field (16 DAI).

The best differentiation results were obtained at 20
(by SVM classifier) and 24 DAI (by SVM and NB
classifier) with the conventional visible sensor.

This study presented a relatively simple method for
detecting disease that can be applied in the field. The
spectral reflectance of lettuce shows potential in

identifying soft rot caused by Pectobacterium carotovo-
rum subsp. carotovorum and machine learning may be
suitable for processing radiometric data and agro-
nomic parameters.
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