

Test Report No. T19969-01-1 Issue 2
Testing to: NIOSH TEB-APR-STP-0003, NIOSH TEB-APR-STP-0007,
NIOSH TEB-APR-STP-0004, and NIOSH TEB-APR-STP-0051
Renegade Innovations Limited

Air Guard Respirator with P100 Filters
15 July 2025

Approved by:

Tyler Jenkins

Manager

Respiratory and Chemical Protective Equipment

Performed by or Prepared by:

Joseph Lommler

Analytical Chemist Respiratory & Chemical Protective Equipment

a) Reports are issued pursuant to AF 1.4-03 "ICS Terms and Conditions" (the final page of this report, unnumbered)

- b) The contents of this test report are confidential. Reproduction of the report is prohibited except in full (this cover page, numbered body pages & ICS AF 1.4-03), unless approved in writing by ICS Laboratories, Inc.
- c) Unless otherwise indicated, the test results contained in this report apply only to the samples tested and not to lots or batches from which they were taken.
- d) Where applicable, test data provided by subcontractor is uniquely identified in the test report.
- e) Where applicable, test data not covered under our ISO/IEC 17025 Accreditation is uniquely identified in the test report.

WARNING: This Test Report may contain technical data whose export is restricted by the Arms Export Control Act (Title 22, U.S. C., Sec 2751, et seq.) or the Export Administration Act of 1979, as amended, Title 50, U.S.C., App. 2401 et seq. and which may not be exported, released or disclosed to non-U.S. persons (i.e. persons who are not U.S. citizens or lawful permanent residents ["green card" holders]) inside or outside the United States, without first obtaining an export license. Violations of these export laws are subject to severe civil, criminal and administrative penalties.

Issued to: Renegade Innovations Limited Date: 15 July 2025 Report: T19969-01-1

883 Garys Way

Spring Creek, NV 89815 Issue: Page: 1 of 21

Summary:

Three Air Guard respirators, three exhalation valve assemblies, and 20 Air Guard filters were tested for exhalation resistance, inhalation resistance, exhalation valve leakage, and filtration efficiency to NIOSH standards TEB-APR-STP-0003, TEB-APR-STP-0007, TEB-APR-STP-0004, and TEB-APR-STP-0051. The samples were submitted by Renegade Innovations Limited. All samples met inhalation resistance requirements and P100 filtration efficiency requirements, having inhalation resistances ≤ 35 mmH₂O and maximum penetrations ≤ 0.03 %; however, one sample failed to meet exhalation resistance requirements, having an exhalation resistance > 25 mmH₂O, and all valve samples failed to meet leakage requirements, having leakage rates > 30 mL/min.

Objectives:

Testing to: NIOSH Procedure TEB-APR-STP-0003 "Determination of Exhalation Resistance Test, Air-

Purifying Respirators Standard Testing Procedure (STP)" Revision: 2.5, 27 January 2023 NIOSH Procedure TEB-APR-STP-0007 "Determination of Inhalation Resistance Test, Air-

Purifying Respirators Standard Testing Procedure (STP)" Revision: 2.4, 27 January 2023 NIOSH Procedure TEB-APR-STP-0004 "Determination of Exhalation Valve Leakage Test,

Air-Purifying Respirators Standard Testing Procedure (STP)" Revision: 2.3, 27 January

NIOSH Procedure TEB-APR-STP-0051 "Determination of Particulate Filter Efficiency Level for P100 Series Filters against Liquid Particulates for Non-Powered, Air-Purifying Respirators Standard Testing Procedure (STP)" Revision 3.2, 28 May 2019

Materials:

Description	Quantity
Complete Air Guard respirators	3
Air Guard exhaust assembly w/ valves	6
Air Guard filter assembly w/ o-rings	4
Air Guard filter	28

Date provided by the Client: 01 May 2025 Date Testing Authorized: 25 April 2025 Dates of tests: 02 - 06 May 2025

Manufacturer/Supplier Renegade Innovations Limited

Equipment:

8130A Filter Tester, TSI, configured for DOP (EQ1325-01)

Flow Meters, Fisher & Porter Co. (EQ0098-02 & EQ0098-03)

Digital Manometer; Dwyer Instruments (EQ0269)

Model XS205 Dual Range Analytical balance, Mettler Toledo (EQ0397)

Vacuum Pumps; Marathon Electric (EQ0088-04-02 &-03)

Airflow Bench, ICS Custom (EQ0415)

Gilibrator 2, Sensidyne (EQ0603)

Low Flow Cell (1-250cc), Sensidyne (EQ0603-01-02)

AFT Test Media PN 813010, lot # 511483-13, TSI (C0006-01)

A/E Glass Fiber Filter, Pall Corporation (C0006-03)

Bubble Generator Soap Solution, Sensidyne (C0589)

Dioctvl phthalate (100%), Sigma Aldrich (C0020)

Spring Creek, NV 89815

Procedures:

15 July 2025 883 Garys Way Report: T19969-01-1 Issue:

Page: 2 of 21

Date:

All tests were conducted in a standard laboratory atmosphere unless otherwise specified. The equipment and instrument calibrations were verified current and within specification prior to use. The materials for assessment were inventoried, numbered, and logged upon receipt.

The exhalation resistance test was performed in general accordance with NIOSH Procedure TEB-APR-STP-0003. A positive 85 LPM airflow through the respirator was established, and the pressure difference across the respirator was determined with the digital manometer. The pressure was corrected for systemic resistance and recorded in mmH₂O column height.

The inhalation resistance test was performed in general accordance with NIOSH Procedure TEB-APR-STP-0007. A negative 85 LPM airflow through the respirator was established, and the pressure difference across the respirator was determined with the digital manometer. The pressure was corrected for systemic resistance and recorded in mmH₂O column height.

The exhalation valve leakage test was performed in general accordance with NIOSH Procedure TEB-APR-STP-0004. The system was tested for leaks under a vacuum of 4 in. water, and any detected leaks were sealed before continuing the testing. Testing was performed under a vacuum of 1.0 to 1.2 in. water. Valve assembly samples were provided by the client. The exhalation valve samples were sealed airtight to a plate with hot-melt adhesive and assembled into the testing fixture. A minimum of three readings were taken on each valve. The average of the readings and the pressure of the vacuum are reported.

The efficiency test was performed in general accordance with NIOSH Procedure TEB-APR-STP-0051. 20 filters were challenged with a neutralized DOP liquid aerosol at 25°C +/- 5°C. Particle size distribution was verified to be a count median diameter of 0.185 +/- 0.020 micron, with a geometric standard deviation not exceeding 1.60. Aerosol concentration was determined via gravimetric loading and confirmed to be $< 200 \text{ mg/m}^3$.

The filters were assessed to DOP aerosol loading at an airflow rate of 42.5 +/- 2 liters per minute, as applicable to a dual cartridge APR system. The filters were assembled into a fixture provided by the client. The initial flow rate, corresponding resistance, and percent penetration for each filter were recorded. The filters were loaded with 115 +/- 5 mg of DOP, at which point filtration efficiency over the last 30 +/- 5 mg was assessed. If the filter displayed a bandwidth of ≤ 0.004 % penetration over the last 30 +/- 5 mg of loading, further testing was stopped. If the filter displayed a bandwidth of > 0.004 % penetration, the filter was subjected to an additional 30 +/- 5 mg of aerosol loading at the end of which another bandwidth reading was taken. Incremental loadings continued until a failing result of > 0.03 % penetration was observed, at which point testing was stopped, or until the maximum loading level of 215 +/- 5 mg was achieved. Upon completion of the loading, the resulting resistance and efficiency data was plotted, and filter efficiency was determined based on the maximum recorded penetration.

15 July 2025 Issued to: Renegade Innovations Limited Date: Report: T19969-01-1

883 Garys Way

Spring Creek, NV 89815 Issue: Page: 3 of 21

Results:

The results for the exhalation and inhalation resistance of the respirators are provided in Table I.

Table I Breathing Resistance – Air Guard Respirator

Sample ID	Exhalation Resistance (mmH ₂ O)*	Inhalation Resistance (mmH ₂ O)*	Result
1-01	26	28	Fail
1-02	23	28	Pass
1-03	24	27	Pass
Specification: **	≤ 25	≤35	

^{*}Resistance corrected for systemic response

Table II outlines the results of the exhalation valve leakage test. A leakage rate greater than 30 mL/min was observed in all samples.

Table II Exhalation Valve Leakage – Air Guard Respirator Exhalation Valves

Sample ID	Vacuum (inH2O)	Average Leak Rate (mL/min)	Result
1-01	1.1	> 250*	Fail
1-02	1.1	> 250*	Fail
1-03	1.1	247	Fail
Specification:	1.0 - 1.2	≤30	

^{*250}mL/min is the upper limit of the Sensidyne Low Flow Cell's measurable range

^{**}Specification based on non-powered air purifying respirator

Report: T19969-01-1

Date:

Issue: 2

Page: 4 of 21

Issued to: Renegade Innovations Limited

883 Garys Way

Spring Creek, NV 89815

USA

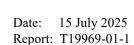
Results (cont.):

The results for the loading tests of the Air Guard Respirator filters are provided in Table III.

<u>**Table III**</u>
Filtration Efficiency Results – Air Guard Respirator Filters

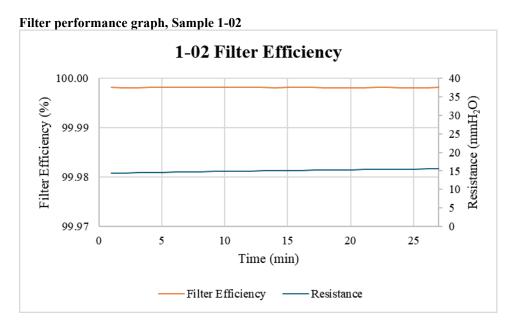
Sample ID	Initial Flow Rate (LPM)	Initial Resistance (mmH ₂ O)	Initial Penetration (%)	Maximum Penetration (%)	Filter Efficiency (%)	Result
1-01	42.6	15	0.00	0.00	100.00	Pass
1-02	42.5	14	0.00	0.00	100.00	Pass
1-03	42.6	14	0.00	0.00	100.00	Pass
1-04	42.5	14	0.00	0.00	100.00	Pass
1-05	42.5	14	0.00	0.00	100.00	Pass
1-06	42.6	14	0.00	0.00	100.00	Pass
1-07	42.6	14	0.00	0.00	100.00	Pass
1-08	42.6	14	0.00	0.00	100.00	Pass
1-09	42.6	14	0.00	0.00	100.00	Pass
1-10	42.5	14	0.01	0.01	99.99	Pass
1-11	42.5	14	0.00	0.00	100.00	Pass
1-12	42.5	14	0.00	0.00	100.00	Pass
1-13	42.5	15	0.00	0.00	100.00	Pass
1-14	42.5	14	0.00	0.00	100.00	Pass
1-15	42.5	15	0.00	0.00	100.00	Pass
1-16	42.5	14	0.00	0.00	100.00	Pass
1-17	42.5	14	0.00	0.00	100.00	Pass
1-18	42.6	14	0.00	0.00	100.00	Pass
1-19	42.6	14	0.00	0.00	100.00	Pass
1-20	42.5	14	0.00	0.00	100.00	Pass
Specification:	40.5 – 44.5		≤(0.03	≥ 99.97	

Below are the filter efficiency and resistance graphs over the loading time for each test. Raw data tables are located in the appendix of this report.



883 Garys Way


Spring Creek, NV 89815

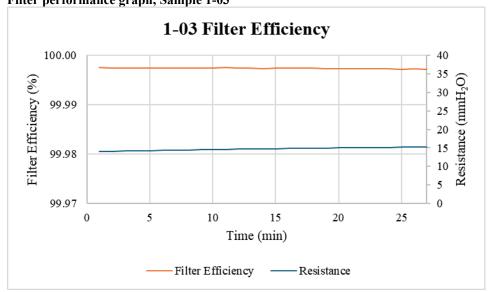

USA

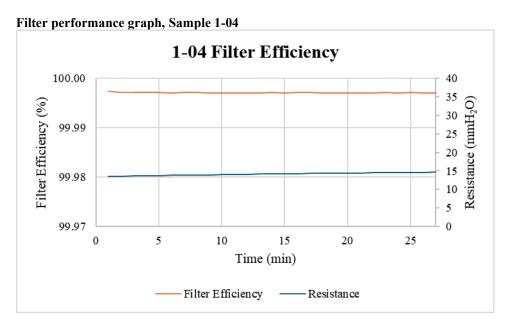
Results (cont.):

Issue: 2 Page: 5 of 21

883 Garys Way

Spring Creek, NV 89815


USA


Results (cont.):

Filter performance graph, Sample 1-03

Issue: 2 Page: 6 of 21

Report: T19969-01-1

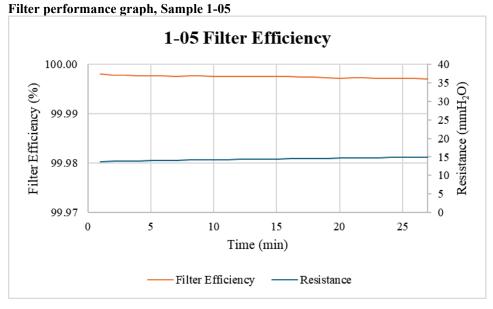
7 of 21

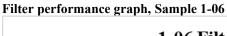
Date:

Issue:

Page:

Issued to: Renegade Innovations Limited

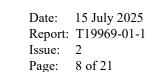

883 Garys Way

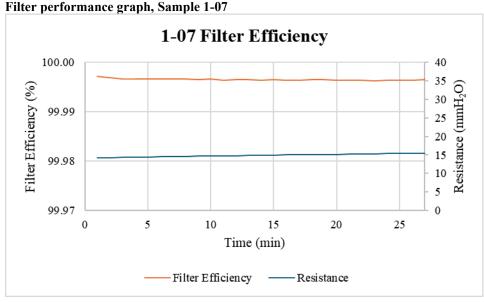

Spring Creek, NV 89815

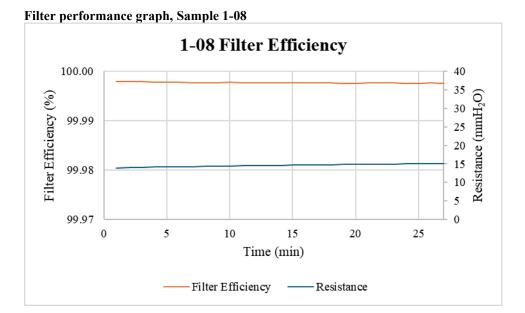
USA

Results (cont.):

ont.):




883 Garys Way


Spring Creek, NV 89815

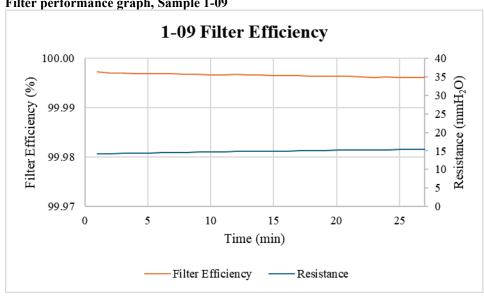
USA

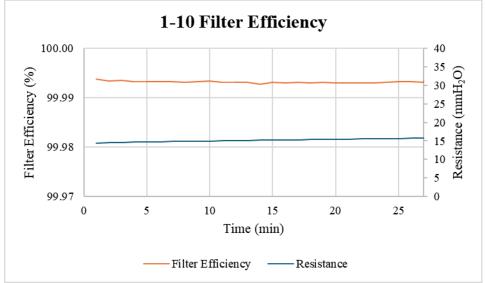
Results (cont.):

883 Garys Way

Spring Creek, NV 89815

USA


Results (cont.):

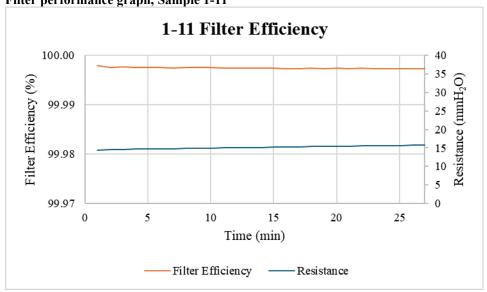

Filter performance graph, Sample 1-09

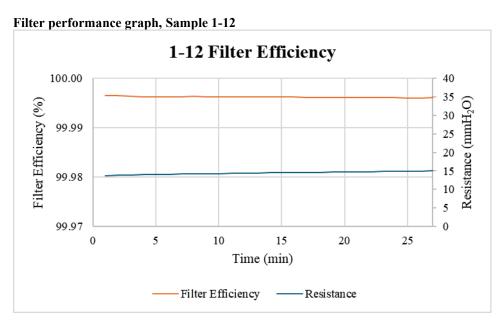
Report: T19969-01-1

Issue: Page: 9 of 21

Issued to: Renegade Innovations Limited

883 Garys Way


Spring Creek, NV 89815


USA

Report: T19969-01-1 Issue: 2 Page: 10 of 21

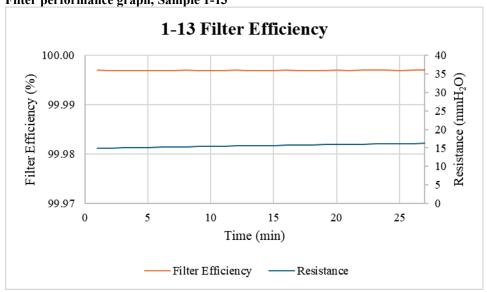
Date:

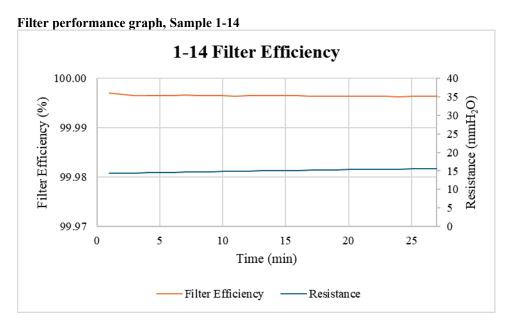
Results (cont.):

Issued to: Renegade Innovations Limited

883 Garys Way

Spring Creek, NV 89815


USA


Issue: 2 Page: 11 of 21

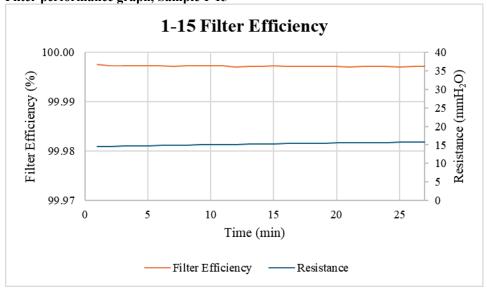
Report: T19969-01-1

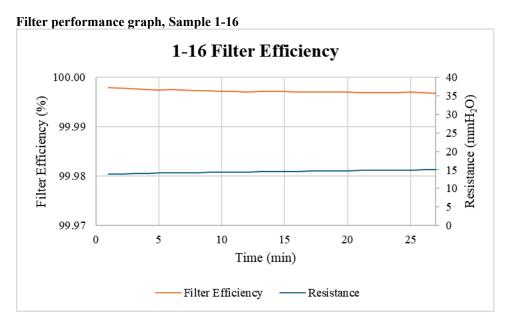
Date:

Results (cont.):

Issued to: Renegade Innovations Limited

883 Garys Way


Spring Creek, NV 89815


USA

Report: T19969-01-1 Issue: 2 Page: 12 of 21

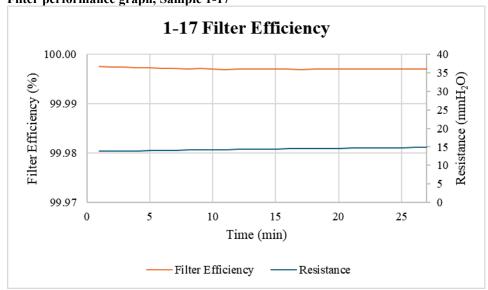
Date:

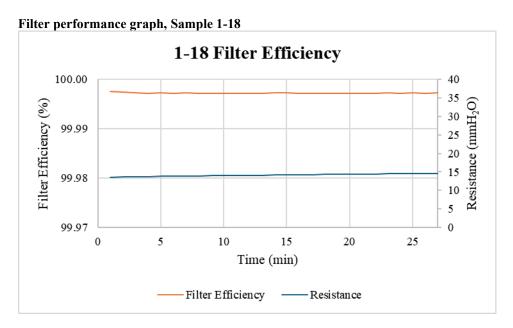
Results (cont.):

Issued to: Renegade Innovations Limited

883 Garys Way

Spring Creek, NV 89815


USA


Issue: 2 Page: 13 of 21

Report: T19969-01-1

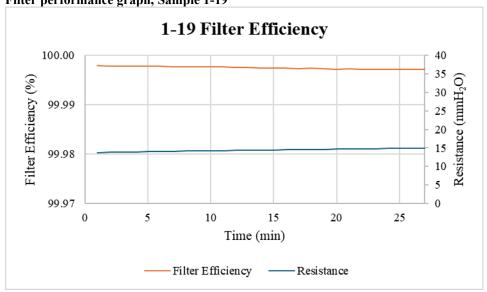
Date:

Results (cont.):

Issued to: Renegade Innovations Limited

883 Garys Way

Spring Creek, NV 89815


USA

Issue: 2 Page: 14 of 21

Report: T19969-01-1

Date:

Results (cont.):

883 Garys Way

Spring Creek, NV 89815

USA

Photographs:

Figure 1: Air Guard Respirator

Figure 3: Respirator mounted for resistance measurement

Figure 5: Valve under leakage test.

Date: 15 July 2025 Report: T19969-01-1

Issue: 2

Page: 15 of 21

Figure 2: Air Guard Respirator Filters

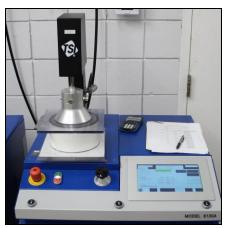


Figure 4: Respirator filter under efficiency test

Date: 15 July 2025

Report: T19969-01-1

Issue: 2 Page: 16 of 21

Issued to: Renegade Innovations Limited

883 Garys Way

Spring Creek, NV 89815

USA

Appendix:

Loading data, Sample 1-01

	L	vauing t	iata, Ban	ipic 1-01										
Time (min)		Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.6	14.9	0.001	4.3	10	42.6	15.4	0.002	42.9	19	42.6	15.8	0.002	81.5
2	42.6	14.9	0.001	8.6	11	42.6	15.4	0.002	47.2	20	42.6	15.8	0.002	85.8
3	42.6	15.0	0.001	12.9	12	42.6	15.5	0.002	51.5	21	42.6	15.9	0.002	90.1
4	42.6	15.0	0.001	17.1	13	42.6	15.5	0.002	55.8	22	42.6	15.9	0.002	94.4
5	42.6	15.1	0.001	21.4	14	42.6	15.6	0.002	60.0	23	42.6	16.0	0.002	98.6
6	42.6	15.2	0.001	25.7	15	42.6	15.6	0.002	64.3	24	42.6	16.0	0.002	102.9
7	42.6	15.2	0.001	30.0	16	42.6	15.7	0.002	68.6	25	42.6	16.1	0.002	107.2
8	42.6	15.3	0.002	34.3	17	42.6	15.7	0.002	72.9	26	42.6	16.1	0.002	111.5
9	42.6	15.3	0.002	38.6	18	42.6	15.8	0.002	77.2	27	42.6	16.1	0.002	115.8

Loading data, Sample 1-02

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.5	14.4	0.002	4.3	10	42.5	14.9	0.002	42.8	19	42.5	15.3	0.002	81.3
2	42.5	14.4	0.002	8.6	11	42.5	14.9	0.002	47.1	20	42.5	15.3	0.002	85.6
3	42.5	14.5	0.002	12.8	12	42.5	15.0	0.002	51.3	21	42.5	15.4	0.002	89.9
4	42.5	14.5	0.002	17.1	13	42.5	15.0	0.002	55.6	22	42.5	15.4	0.002	94.1
5	42.5	14.6	0.002	21.4	14	42.5	15.0	0.002	59.9	23	42.5	15.4	0.002	98.4
6	42.5	14.7	0.002	25.7	15	42.5	15.1	0.002	64.2	24	42.5	15.5	0.002	102.7
7	42.5	14.7	0.002	29.9	16	42.5	15.1	0.002	68.5	25	42.5	15.5	0.002	107.0
8	42.5	14.8	0.002	34.2	17	42.5	15.2	0.002	72.7	26	42.5	15.6	0.002	111.3
9	42.5	14.8	0.002	38.5	18	42.5	15.2	0.002	77.0	27	42.5	15.6	0.002	115.5

Loading data, Sample 1-03

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.6	14.0	0.002	4.3	10	42.6	14.6	0.003	42.8	19	42.6	15.0	0.003	81.4
2	42.6	14.1	0.003	8.6	11	42.6	14.6	0.003	47.1	20	42.6	15.0	0.003	85.7
3	42.6	14.2	0.003	12.8	12	42.6	14.7	0.003	51.4	21	42.6	15.1	0.003	90.0
4	42.6	14.2	0.003	17.1	13	42.6	14.7	0.003	55.7	22	42.6	15.1	0.003	94.3
5	42.6	14.3	0.003	21.4	14	42.6	14.7	0.003	60.0	23	42.6	15.1	0.003	98.6
6	42.6	14.3	0.003	25.7	15	42.6	14.8	0.003	64.3	24	42.6	15.2	0.003	102.8
7	42.6	14.4	0.003	30.0	16	42.6	14.8	0.003	68.6	25	42.6	15.2	0.003	107.1
8	42.6	14.4	0.003	34.3	17	42.6	14.9	0.003	72.8	26	42.6	15.3	0.003	111.4
9	42.6	14.5	0.003	38.6	18	42.6	14.9	0.003	77.1	27	42.6	15.3	0.003	115.7

		ouding t	iain, Saii	ipic i o i										
Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.5	13.5	0.003	4.3	10	42.5	14.0	0.003	42.8	19	42.5	14.4	0.003	81.3
2	42.5	13.6	0.003	8.6	11	42.5	14.1	0.003	47.1	20	42.5	14.4	0.003	85.6
3	42.5	13.7	0.003	12.8	12	42.5	14.1	0.003	51.4	21	42.5	14.5	0.003	89.9
4	42.5	13.7	0.003	17.1	13	42.5	14.2	0.003	55.6	22	42.5	14.5	0.003	94.2
5	42.5	13.8	0.003	21.4	14	42.5	14.2	0.003	59.9	23	42.5	14.5	0.003	98.4
6	42.5	13.8	0.003	25.7	15	42.5	14.2	0.003	64.2	24	42.5	14.6	0.003	102.7
7	42.5	13.9	0.003	30.0	16	42.5	14.3	0.003	68.5	25	42.5	14.6	0.003	107.0
8	42.5	13.9	0.003	34.2	17	42.5	14.3	0.003	72.8	26	42.5	14.6	0.003	111.3
9	42.5	14.0	0.003	38.5	18	42.5	14.3	0.003	77.0	27	42.5	14.7	0.003	115.6

883 Garys Way

Spring Creek, NV 89815

USA

Appendix (cont.):

Loading data, Sample 1-05

Date:	15 July 2025
Report	T19969_01_1

Issue: 2 Page: 17 of 21

Time	Flow	Resistance	Penetration	Amount	Time	Flow	Resistance	Penetration	Amount	Time	Flow	Resistance	Penetration	Amount
(min)	(LPM)	(mmH ₂ O)	(%)	Loaded (mg)	(min)	(LPM)	(mmH ₂ O)	(%)	Loaded (mg)	(min)	(LPM)	(mmH ₂ O)	(%)	Loaded (mg)
1	42.5	13.8	0.002	4.3	10	42.5	14.2	0.002	42.8	19	42.5	14.6	0.003	81.3
2	42.5	13.8	0.002	8.6	11	42.5	14.3	0.002	47.1	20	42.5	14.7	0.003	85.6
3	42.5	13.9	0.002	12.8	12	42.5	14.3	0.002	51.4	21	42.5	14.7	0.003	89.9
4	42.5	13.9	0.002	17.1	13	42.5	14.4	0.003	55.6	22	42.5	14.8	0.003	94.2
5	42.5	14.0	0.002	21.4	14	42.5	14.4	0.002	59.9	23	42.5	14.8	0.003	98.4
6	42.5	14.1	0.002	25.7	15	42.5	14.5	0.002	64.2	24	42.5	14.8	0.003	102.7
7	42.5	14.1	0.002	30.0	16	42.5	14.5	0.003	68.5	25	42.5	14.9	0.003	107.0
8	42.5	14.1	0.002	34.2	17	42.5	14.6	0.003	72.8	26	42.5	14.9	0.003	111.3
9	42.5	14.2	0.002	38.5	18	42.5	14.6	0.003	77.0	27	42.5	14.9	0.003	115.6

Loading data, Sample 1-06

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.6	14.2	0.003	4.3	10	42.6	14.7	0.003	42.8	19	42.6	15.1	0.004	81.4
2	42.6	14.2	0.003	8.6	11	42.6	14.7	0.003	47.1	20	42.6	15.2	0.004	85.7
3	42.6	14.3	0.003	12.9	12	42.6	14.8	0.003	51.4	21	42.6	15.2	0.004	90.0
4	42.6	14.4	0.003	17.1	13	42.6	14.8	0.004	55.7	22	42.6	15.2	0.004	94.2
5	42.6	14.4	0.003	21.4	14	42.6	14.9	0.004	60.0	23	42.6	15.3	0.004	98.5
6	42.6	14.5	0.003	25.7	15	42.6	14.9	0.004	64.3	24	42.6	15.3	0.004	102.8
7	42.6	14.5	0.003	30.0	16	42.6	15.0	0.004	68.5	25	42.6	15.4	0.004	107.1
8	42.6	14.6	0.003	34.3	17	42.6	15.0	0.004	72.8	26	42.6	15.4	0.004	111.4
9	42.6	14.6	0.003	38.6	18	42.6	15.1	0.004	77.1	27	42.6	15.5	0.004	115.6

Loading data, Sample 1-07

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.6	14.2	0.003	4.3	10	42.6	14.7	0.003	42.8	19	42.6	15.1	0.003	81.4
2	42.6	14.3	0.003	8.6	11	42.6	14.8	0.004	47.1	20	42.6	15.2	0.004	85.6
3	42.6	14.3	0.003	12.8	12	42.6	14.8	0.004	51.4	21	42.5	15.2	0.004	89.9
4	42.6	14.4	0.003	17.1	13	42.6	14.9	0.003	55.7	22	42.6	15.3	0.004	94.2
5	42.6	14.4	0.003	21.4	14	42.6	14.9	0.004	60.0	23	42.5	15.3	0.004	98.5
6	42.6	14.5	0.003	25.7	15	42.6	15.0	0.004	64.2	24	42.5	15.4	0.004	102.8
7	42.6	14.6	0.003	30.0	16	42.5	15.0	0.004	68.5	25	42.5	15.4	0.004	107.1
8	42.6	14.6	0.003	34.3	17	42.6	15.1	0.004	72.8	26	42.6	15.4	0.004	111.3
9	42.6	14.7	0.003	38.5	18	42.5	15.1	0.004	77.1	27	42.6	15.5	0.004	115.6

		ouding t	intu, Dan	ipic i oo										
Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.6	13.9	0.002	4.3	10	42.6	14.4	0.002	42.8	19	42.6	14.8	0.002	81.4
2	42.5	14.0	0.002	8.6	11	42.6	14.5	0.002	47.1	20	42.6	14.9	0.002	85.6
3	42.6	14.1	0.002	12.8	12	42.6	14.5	0.002	51.4	21	42.6	14.9	0.002	89.9
4	42.6	14.2	0.002	17.1	13	42.6	14.6	0.002	55.7	22	42.6	15.0	0.002	94.2
5	42.6	14.2	0.002	21.4	14	42.6	14.6	0.002	60.0	23	42.6	15.0	0.002	98.5
6	42.6	14.2	0.002	25.7	15	42.6	14.7	0.002	64.2	24	42.6	15.1	0.002	102.8
7	42.6	14.3	0.002	30.0	16	42.6	14.7	0.002	68.5	25	42.6	15.1	0.002	107.1
8	42.5	14.4	0.002	34.3	17	42.6	14.8	0.002	72.8	26	42.6	15.1	0.002	111.3
9	42.6	14.4	0.002	38.5	18	42.6	14.8	0.002	77.1	27	42.6	15.2	0.002	115.6

Date: 15 July 2025

Report: T19969-01-1

18 of 21

Issue: 2

Page:

Issued to: Renegade Innovations Limited

883 Garys Way

Spring Creek, NV 89815

USA

Appendix (cont.):

Loading data, Sample 1-09

	-	ouding t	iata, Saii	ipic i oz										
Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.6	14.2	0.003	4.3	10	42.6	14.7	0.003	42.8	19	42.6	15.1	0.004	81.4
2	42.6	14.3	0.003	8.6	11	42.6	14.8	0.003	47.1	20	42.6	15.2	0.004	85.7
3	42.6	14.3	0.003	12.8	12	42.6	14.8	0.003	51.4	21	42.6	15.2	0.004	89.9
4	42.6	14.4	0.003	17.1	13	42.6	14.9	0.003	55.7	22	42.5	15.3	0.004	94.2
5	42.6	14.5	0.003	21.4	14	42.6	14.9	0.003	60.0	23	42.6	15.3	0.004	98.5
6	42.6	14.5	0.003	25.7	15	42.6	14.9	0.003	64.2	24	42.5	15.3	0.004	102.8
7	42.6	14.6	0.003	30.0	16	42.6	15.0	0.003	68.5	25	42.5	15.4	0.004	107.1
8	42.6	14.6	0.003	34.3	17	42.6	15.0	0.004	72.8	26	42.6	15.4	0.004	111.3
9	42.6	14.7	0.003	38.5	18	42.6	15.1	0.004	77.1	27	42.5	15.5	0.004	115.6

Loading data, Sample 1-10

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.5	14.4	0.006	4.3	10	42.5	15.0	0.007	42.7	19	42.5	15.4	0.007	81.2
2	42.5	14.5	0.007	8.5	11	42.5	15.0	0.007	47.0	20	42.5	15.5	0.007	85.5
3	42.5	14.6	0.007	12.8	12	42.5	15.1	0.007	51.3	21	42.5	15.5	0.007	89.8
4	42.5	14.7	0.007	17.1	13	42.5	15.2	0.007	55.6	22	42.5	15.5	0.007	94.1
5	42.5	14.7	0.007	21.4	14	42.5	15.2	0.007	59.9	23	42.5	15.6	0.007	98.3
6	42.5	14.8	0.007	25.6	15	42.5	15.2	0.007	64.1	24	42.5	15.6	0.007	102.6
7	42.5	14.8	0.007	29.9	16	42.5	15.3	0.007	68.4	25	42.5	15.7	0.007	106.9
8	42.5	14.9	0.007	34.2	17	42.5	15.3	0.007	72.7	26	42.5	15.7	0.007	111.2
9	42.5	14.9	0.007	38.5	18	42.5	15.4	0.007	77.0	27	42.5	15.8	0.007	115.4

Loading data, Sample 1-11

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.5	14.4	0.002	4.3	10	42.5	15.0	0.003	42.7	19	42.5	15.4	0.003	81.2
2	42.5	14.5	0.002	8.5	11	42.5	15.0	0.003	47.0	20	42.5	15.4	0.003	85.5
3	42.5	14.6	0.002	12.8	12	42.5	15.1	0.003	51.3	21	42.5	15.5	0.003	89.7
4	42.5	14.7	0.002	17.1	13	42.5	15.1	0.003	55.6	22	42.5	15.5	0.003	94.0
5	42.5	14.7	0.002	21.4	14	42.5	15.2	0.003	59.8	23	42.5	15.6	0.003	98.3
6	42.5	14.8	0.002	25.6	15	42.5	15.2	0.003	64.1	24	42.5	15.6	0.003	102.6
7	42.5	14.8	0.003	29.9	16	42.5	15.2	0.003	68.4	25	42.5	15.6	0.003	106.8
8	42.5	14.9	0.002	34.2	17	42.5	15.3	0.003	72.6	26	42.4	15.7	0.003	111.1
9	42.5	14.9	0.002	38.5	18	42.5	15.3	0.003	76.9	27	42.5	15.7	0.003	115.4

		bauing t	iata, San	1pic 1-12										
Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.5	13.8	0.003	4.3	10	42.5	14.3	0.004	42.7	19	42.5	14.7	0.004	81.2
2	42.5	13.9	0.004	8.5	11	42.5	14.3	0.004	47.0	20	42.5	14.7	0.004	85.5
3	42.5	13.9	0.004	12.8	12	42.5	14.4	0.004	51.3	21	42.5	14.8	0.004	89.8
4	42.5	14.0	0.004	17.1	13	42.5	14.4	0.004	55.6	22	42.5	14.8	0.004	94.1
5	42.5	14.0	0.004	21.4	14	42.5	14.5	0.004	59.8	23	42.5	14.9	0.004	98.3
6	42.5	14.1	0.004	25.6	15	42.5	14.5	0.004	64.1	24	42.5	14.9	0.004	102.6
7	42.5	14.1	0.004	29.9	16	42.5	14.6	0.004	68.4	25	42.5	14.9	0.004	106.9
8	42.5	14.2	0.004	34.2	17	42.5	14.6	0.004	72.7	26	42.5	15.0	0.004	111.2
9	42.5	14.2	0.004	38.5	18	42.5	14.6	0.004	76.9	27	42.5	15.0	0.004	115.4

883 Garys Way

Spring Creek, NV 89815

USA

Appendix (cont.):

Loading data, Sample 1-13

Date:	15 July 2025
Report:	T19969_01_1

Issue: 2 Page: 19 of 21

Time	Flow	Resistance	Penetration	Amount	Time	Flow	Resistance	Penetration	Amount	Time	Flow	Resistance	Penetration	Amount
(min)	(LPM)	(mmH ₂ O)	(%)	Loaded (mg)	(min)	(LPM)	(mmH ₂ O)	(%)	Loaded (mg)	(min)	(LPM)	(mmH ₂ O)	(%)	Loaded (mg)
1	42.5	14.8	0.003	4.3	10	42.5	15.4	0.003	42.8	19	42.5	15.9	0.003	81.3
2	42.5	14.9	0.003	8.6	11	42.5	15.5	0.003	47.1	20	42.5	15.9	0.003	85.6
3	42.5	15.0	0.003	12.8	12	42.5	15.5	0.003	51.3	21	42.5	16.0	0.003	89.8
4	42.5	15.1	0.003	17.1	13	42.5	15.6	0.003	55.6	22	42.5	16.0	0.003	94.1
5	42.5	15.1	0.003	21.4	14	42.5	15.6	0.003	59.9	23	42.5	16.1	0.003	98.4
6	42.5	15.2	0.003	25.7	15	42.5	15.7	0.003	64.2	24	42.5	16.1	0.003	102.7
7	42.5	15.2	0.003	29.9	16	42.5	15.7	0.003	68.4	25	42.5	16.1	0.003	106.9
8	42.5	15.3	0.003	34.2	17	42.5	15.8	0.003	72.7	26	42.5	16.2	0.003	111.2
9	42.5	15.4	0.003	38.5	18	42.5	15.8	0.003	77.0	27	42.5	16.2	0.003	115.5

Loading data, Sample 1-14

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.5	14.3	0.003	4.3	10	42.5	14.9	0.003	42.8	19	42.5	15.3	0.004	81.3
2	42.5	14.4	0.003	8.6	11	42.5	14.9	0.004	47.1	20	42.5	15.3	0.004	85.6
3	42.5	14.5	0.003	12.8	12	42.5	15.0	0.004	51.3	21	42.5	15.4	0.004	89.8
4	42.5	14.5	0.003	17.1	13	42.5	15.0	0.003	55.6	22	42.5	15.4	0.004	94.1
5	42.5	14.6	0.003	21.4	14	42.5	15.1	0.003	59.9	23	42.5	15.4	0.004	98.4
6	42.5	14.6	0.003	25.7	15	42.5	15.1	0.004	64.2	24	42.5	15.5	0.004	102.7
7	42.5	14.7	0.003	29.9	16	42.5	15.2	0.004	68.5	25	42.5	15.5	0.004	107.0
8	42.5	14.8	0.003	34.2	17	42.5	15.2	0.004	72.7	26	42.5	15.6	0.004	111.2
9	42.5	14.8	0.003	38.5	18	42.5	15.2	0.004	77.0	27	42.5	15.6	0.004	115.5

Loading data, Sample 1-15

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.5	14.6	0.002	4.3	10	42.5	15.1	0.003	42.9	19	42.5	15.5	0.003	81.4
2	42.5	14.6	0.003	8.6	11	42.5	15.1	0.003	47.1	20	42.5	15.5	0.003	85.7
3	42.5	14.7	0.003	12.9	12	42.5	15.2	0.003	51.4	21	42.5	15.6	0.003	90.0
4	42.5	14.8	0.003	17.1	13	42.5	15.2	0.003	55.7	22	42.5	15.6	0.003	94.3
5	42.5	14.8	0.003	21.4	14	42.5	15.2	0.003	60.0	23	42.5	15.7	0.003	98.6
6	42.5	14.9	0.003	25.7	15	42.5	15.3	0.003	64.3	24	42.5	15.7	0.003	102.8
7	42.5	14.9	0.003	30.0	16	42.5	15.4	0.003	68.6	25	42.5	15.7	0.003	107.1
8	42.5	15.0	0.003	34.3	17	42.5	15.4	0.003	72.9	26	42.5	15.8	0.003	111.4
9	42.5	15.0	0.003	38.6	18	42.5	15.4	0.003	77.1	27	42.5	15.8	0.003	115.7

		ouums t	mun, oun	-pic 1 10										
Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.5	13.9	0.002	4.3	10	42.5	14.4	0.003	42.9	19	42.5	14.8	0.003	81.4
2	42.5	13.9	0.002	8.6	11	42.5	14.4	0.003	47.1	20	42.5	14.8	0.003	85.7
3	42.5	14.0	0.002	12.9	12	42.5	14.5	0.003	51.4	21	42.5	14.9	0.003	90.0
4	42.5	14.1	0.002	17.1	13	42.5	14.5	0.003	55.7	22	42.5	14.9	0.003	94.3
5	42.5	14.1	0.003	21.4	14	42.5	14.6	0.003	60.0	23	42.5	14.9	0.003	98.6
6	42.5	14.2	0.002	25.7	15	42.5	14.6	0.003	64.3	24	42.5	15.0	0.003	102.9
7	42.5	14.3	0.003	30.0	16	42.5	14.6	0.003	68.6	25	42.5	15.0	0.003	107.2
8	42.5	14.3	0.003	34.3	17	42.5	14.7	0.003	72.9	26	42.5	15.0	0.003	111.5
9	42.5	14.3	0.003	38.6	18	42.5	14.7	0.003	77.2	27	42.5	15.1	0.003	115.8

883 Garys Way

Spring Creek, NV 89815

USA

Appendix (cont.):

Loading data, Sample 1-17

Date:	15 July 2025
D4.	T10060 01 1

Report: T19969-01-1

Issue: 2 Page: 20 of 21

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.5	13.8	0.002	4.3	10	42.6	14.3	0.003	42.9	19	42.6	14.6	0.003	81.6
2	42.6	13.8	0.003	8.6	11	42.6	14.3	0.003	47.2	20	42.6	14.6	0.003	85.8
3	42.5	13.9	0.003	12.9	12	42.6	14.3	0.003	51.5	21	42.6	14.7	0.003	90.1
4	42.6	14.0	0.003	17.2	13	42.6	14.4	0.003	55.8	22	42.6	14.7	0.003	94.4
5	42.6	14.0	0.003	21.5	14	42.6	14.4	0.003	60.1	23	42.6	14.8	0.003	98.7
6	42.6	14.1	0.003	25.7	15	42.6	14.4	0.003	64.4	24	42.6	14.8	0.003	103.0
7	42.6	14.1	0.003	30.0	16	42.6	14.5	0.003	68.7	25	42.6	14.8	0.003	107.3
8	42.6	14.2	0.003	34.3	17	42.6	14.5	0.003	73.0	26	42.6	14.9	0.003	111.6
9	42.6	14.2	0.003	38.6	18	42.6	14.6	0.003	77.3	27	42.6	14.9	0.003	115.9

Loading data, Sample 1-18

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.6	13.6	0.002	4.3	10	42.6	14.0	0.003	42.9	19	42.6	14.4	0.003	81.5
2	42.6	13.6	0.003	8.6	11	42.6	14.1	0.003	47.2	20	42.6	14.4	0.003	85.8
3	42.6	13.7	0.003	12.9	12	42.5	14.1	0.003	51.5	21	42.6	14.4	0.003	90.1
4	42.6	13.8	0.003	17.2	13	42.6	14.1	0.003	55.8	22	42.6	14.5	0.003	94.4
5	42.6	13.8	0.003	21.5	14	42.5	14.2	0.003	60.1	23	42.6	14.5	0.003	98.7
6	42.6	13.8	0.003	25.8	15	42.6	14.2	0.003	64.4	24	42.5	14.5	0.003	103.0
7	42.6	13.9	0.003	30.0	16	42.6	14.3	0.003	68.7	25	42.6	14.5	0.003	107.3
8	42.6	13.9	0.003	34.3	17	42.6	14.3	0.003	73.0	26	42.6	14.6	0.003	111.6
9	42.6	14.0	0.003	38.6	18	42.6	14.3	0.003	77.3	27	42.6	14.6	0.003	115.9

Loading data, Sample 1-19

Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.6	13.7	0.002	4.3	10	42.6	14.2	0.002	42.9	19	42.6	14.6	0.003	81.6
2	42.5	13.8	0.002	8.6	11	42.6	14.3	0.002	47.2	20	42.6	14.7	0.003	85.8
3	42.6	13.8	0.002	12.9	12	42.6	14.3	0.002	51.5	21	42.6	14.7	0.003	90.1
4	42.5	13.9	0.002	17.2	13	42.6	14.4	0.002	55.8	22	42.6	14.8	0.003	94.4
5	42.6	14.0	0.002	21.5	14	42.6	14.4	0.003	60.1	23	42.6	14.8	0.003	98.7
6	42.6	14.0	0.002	25.8	15	42.6	14.5	0.003	64.4	24	42.6	14.8	0.003	103.0
7	42.6	14.1	0.002	30.0	16	42.6	14.5	0.003	68.7	25	42.6	14.9	0.003	107.3
8	42.6	14.1	0.002	34.3	17	42.6	14.5	0.003	73.0	26	42.6	14.9	0.003	111.6
9	42.6	14.2	0.002	38.6	18	42.6	14.6	0.003	77.3	27	42.6	14.9	0.003	115.9

	Loading data, Sample 1-20													
Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)	Time (min)	Flow (LPM)	Resistance (mmH ₂ O)	Penetration (%)	Amount Loaded (mg)
1	42.5	13.8	0.003	4.3	10	42.5	14.3	0.003	42.9	19	42.5	14.7	0.004	81.5
2	42.5	13.9	0.003	8.6	11	42.5	14.4	0.003	47.2	20	42.5	14.7	0.004	85.8
3	42.5	13.9	0.003	12.9	12	42.5	14.4	0.003	51.5	21	42.5	14.8	0.004	90.0
4	42.5	14.0	0.003	17.2	13	42.5	14.4	0.003	55.7	22	42.5	14.8	0.004	94.3
5	42.5	14.1	0.003	21.4	14	42.5	14.5	0.004	60.0	23	42.5	14.9	0.004	98.6
6	42.5	14.1	0.003	25.7	15	42.5	14.5	0.004	64.3	24	42.5	14.9	0.004	102.9
7	42.5	14.2	0.003	30.0	16	42.5	14.6	0.004	68.6	25	42.5	14.9	0.004	107.2
8	42.5	14.2	0.003	34.3	17	42.5	14.6	0.004	72.9	26	42.5	15.0	0.004	111.5
9	42.5	14.3	0.003	38.6	18	42.5	14.7	0.004	77.2	27	42.5	15.0	0.004	115.8

Date: 15 July 2025

Report: T19969-01-1

Issued to: Renegade Innovations Limited

883 Garys Way

Spring Creek, NV 89815

Issue: 2 Page: 21 of 21 USA

Revision History:

Issue	Date	Description
1	09 May 2025	Original issue of results.
2	15 July 2025	Updated the report header to reflect the client's preferred business address.

TERMS AND CONDITIONS

- Client acknowledges that ICS Laboratories (ICS) performs testing services only as contracted by Client. ICS does not design, warrant, supervise or monitor compliance of products or services except as specifically agreed to in writing. By their very nature, testing, analysis, and other ICS services are limited in scope and subject to expected measurement variability.
- Client retains the right to clarify test requests and reasonable access to monitor test work, with reference to test queue and obligations regarding the confidentiality of other clients.
- ICS shall keep documents and information related to Client confidential and will not disclose any such information to third parties without written consent. ICS will disclose such information in response to compulsory legal process, (only after providing Client with notice-of and/or a copy of such process).
- 4. ICS Reports apply only to the standards or procedures identified therein and to the sample(s) assessed. Test results are not definitively indicative of the qualities of the lot from which the sample was taken or of apparently identical or similar products.
- 5. ICS Test Reports and their insignia are for the exclusive use of the Client. Reports, in their entirety, may be utilized at the discretion of Clients and/or their authorized agents for purposes including, but not limited to, research & development, recordkeeping, product packaging, educational and promotional materials in various formats, certification, and compliance. As an accredited independent testing laboratory, ICS maintains an interest in preventing the misrepresentation of the contents of its test reports. As such, Clients may NOT use, reproduce or otherwise disseminate excerpted, partial, redacted or otherwise altered ICS test reports without the prior review of such use by ICS and its granting of approval in writing. Further, Clients are prohibited from manipulating data and/or extrapolatingfrom-it statistics or conclusions that contradict or eclipse the empirical results of testing as reflected by the totality of the report. Clients are to refrain from utilizing ICS Test Reports and/or the ICS logo in a manner that suggests any extra-report conclusions are provided and/or endorsed by ICS Laboratories.
- 6. The name(s) listed as the "Issued to" party on test reports may not reflect the actual entity submitting and/or contracting the assessment.
- 7. ICS shall retain copies of testing job files (including reports) for a period of at least six (6) years and when applicable, evidentiary test samples for a length of time agreed to or deemed appropriate. If Client requests additional copies of Reports during this period, an additional charge will apply for the preparation and delivery of such reports.
- 8. Client is responsible for procuring, at its cost, insurance protecting the value of its property, extending to provided samples.
- For the safety of our personnel, Client must advise if samples are known or suspected to contain hazardous substances. Safety Data Sheets must be provided upon request.
- 10. ICS represents that Services shall be performed according to terms and specification agreed to by Client, and in a manner consistent with good laboratory practice. No other Representations to client, express or implied, and no warranty or guarantee is included or intended in this agreement, or in any other report or document related to the services. ICS does not guarantee product performance or compliance.
- 11. Schedules are confirmed upon acceptance of quotation. All reasonable efforts will be made to comply with provided timeline. Guarantees are neither implied nor promised.

- 12. Certain work may be subcontracted to ICS-approved laboratories as required or applicable. Client will be notified of this in advance.
- 13. Client agrees to pay any and all additional costs associated with unexpected or above-standard communications and/or consultations with Client or third parties as designated by Client.
- 14. Client agrees to pay all additional costs for work beyond the original scope of work, as directed and agreed to by Client.
- 15. Client understands and agrees that ICS, in entering into this Contract and by performing services hereunder, does not assume, abridge, abrogate or undertake to discharge any duty or responsibility of Client to any other party or parties. No one other than Client shall have any right to rely on any Report or other representation or conduct of ICS and ICS disclaims any obligations of any nature whatsoever with respect to such third parties.
- 16. For statements of conformity (pass/fail/"meets") regarding qualitative test results, ICS utilizes simple acceptance as its basis. For most statements of conformity relating to quantitative test results, the decision rule and associated uncertainty is inherent in the standard method. As such, simple acceptance is typically applied. Results on or near pass/fail thresholds or otherwise upon Client request or appeal will be evaluated with reference to the measurement uncertainty of relevant testing practices, equipment and other inputs/variables.
- 17. Client agrees, in consideration of ICS undertaking to perform the test(s) hereunder, to protect, defend and indemnify ICS from any and all claims, damages, expenses either direct or consequential for injuries to persons or property arising out of or in consequence of the performance of the testing, inspection and reporting hereunder and/or the performance of the products tested or inspected hereunder, unless caused by the negligence of ICS.
- 18. It is agreed that if ICS should be found liable for any losses or damages attributable to the services hereunder in any respect, its liability shall not exceed the amount of the fee paid by Client for services rendered and Client's sole remedy at law or in equity shall be the right to recover that sum.
- 19. Standard quotations are valid for 30 days from date of issue.

 Ouotations for STAT services are valid for 5 days from date of issue.
- 20. Standard Payment Terms: 30% Laboratory/Testing fees invoiced and payable upon acceptance of quotation. 15 days net. Any change to these terms requires written approval by the President, Executive Vice President, Counsel or Accounting Manager. ICS retains the right to require prepayment in full at any time.
- 21. Cancelled jobs will be invoiced for work performed and/or set-up costs incurred. All jobs will be assessed a \$35 sample handling fee. Shipping costs over \$25 incurred by ICS for sample returns will be invoiced at cost +10%.
- ICS hereby objects to any conflicting terms contained in any order, acceptance or other subsequent correspondence submitted by Client.
- 23. In the event that payment is not received within 15 days of invoice date, Client agrees to pay a late payment charge on the unpaid balance equal to 1-1/2% per month or the maximum charge allowed by law, whichever is less, and all costs and expenses, including attorney's fees where recovery of the same is not prohibited by law, incurred by ICS in collecting such invoices.
- 24. All costs associated with compliance with any subpoena (s) for documents, testimony in a court of law, or for any other purpose relating to work performed by ICS in connection with work performed for that Client, shall be paid by Client. Client shall also pay costs related to deposition and trial testimony.