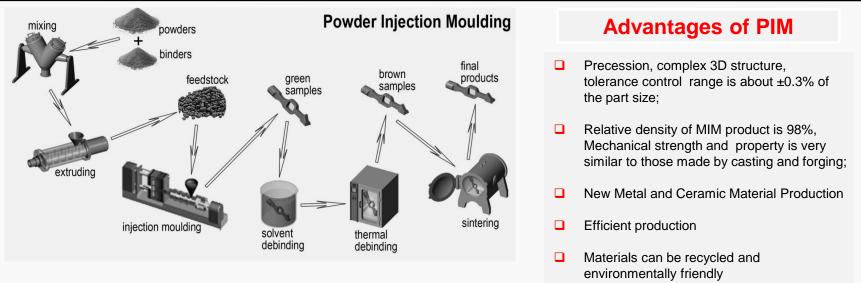
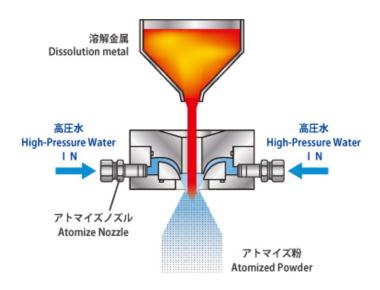


XY Electronics Technology Co.,Ltd


Content

Process of PIM Technology



- Metal/ceramic powders and polymeric binders are evenly mixed and pelletized into the feedstock.
- The feedstock is injected into a die cavity in a semi-solid state using an injection molding machine to produce the green part.
- Binder materials are removed from the green part and get the porous brown part.
- The brown parts are placed on ceramic setters which are sintered at a high temperature in an atmosphere-controlled furnace.

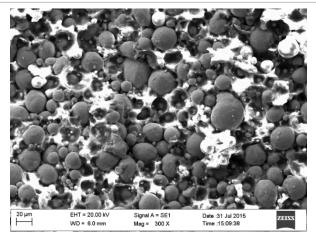
Metal Powder for MIM

- Stainless steel powder is mainly prepared by atomization
- The atomizing medium is water, gas, water and gas combined

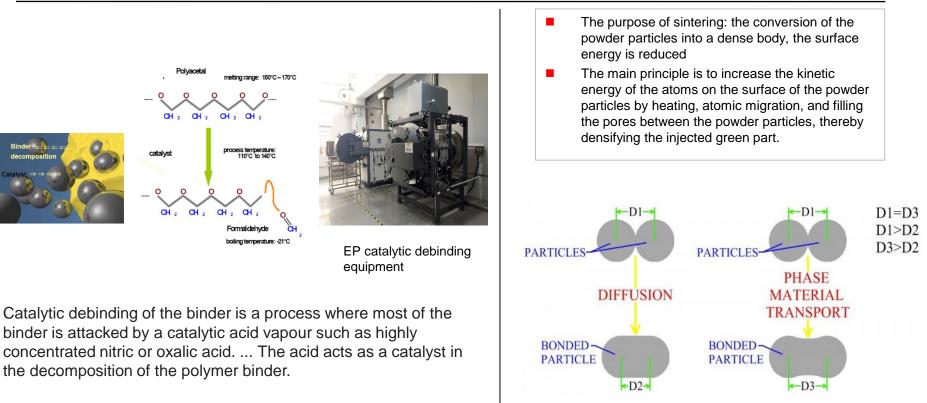
The principle of atomization

Stainless steel atomized powder features

- The shape is spherical or nearly spherical, and the fluidity is good.
- Typically -500 mesh
- □ Typical particle size distribution is: D10≈3~5µm; D50≈8~12µm; D90≈20~25µm
- The water atomized powder has a low cost and an ellipsoid shape, and has a good shape retention ability during sintering, but the powder has a high oxygen content and a low sintered density.
- The gas atomized powder has a high cost, a nearly spherical shape, and a poor shape retention ability during sintering, but the powder has a low oxygen content and a high sintered density.

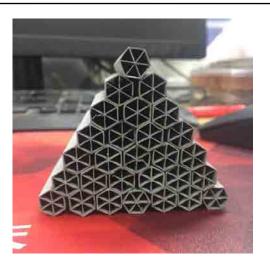

MIM Feedstock

- Three major systems: plastic base, wax base and water base; corresponding to three debinding methods: catalytic debinding, organic solvent debinding and water extraction debinding
- Each of the three major systems has advantages and disadvantages:
 - Plastic base feedstock, good shape retention, high debinding efficiency, but the formula is highly confidential and difficult to imitate
 - Wax-based feedstock, low green strength, slow debinding efficiency, debinding process is relatively friendly to the powder, the formula is relatively simple, but the solvent is difficult to handle, and the recycling cost is high.
 - Water-based feedstock, the performance is similar to wax-based feedstock, but using water as the extraction solvent, environmentally friendly, and the stability needs to be continuously verified.


Plastic base feedstock (EP homemade)

The morphology of the green part after catalytic debinding, the bright white between the powders is the skeleton binder, which is removed during the subsequent sintering process.

De-binding & Sintering



New Technology 1: Forming technology complementary to MIM

- Developed a new process combining other process and MIM
- Suitable for manufacturing two-dimensional complex equal sections, and the wall thickness can be as thin as 0.2mm
- Easy to achieve automated continuous production, high production efficiency; excellent material properties, wide range of applications; reduced costs

New Technology 2: Forming technology complementary to MIM – 3D printing + sintering XY-GL のBAL

✓ 3D printing principle

✓ 3D printing feedstock

✓ 3D printing green parts ✓ 3D printing sintered part

- Customized products can be customized without the need for molds
- Suitable for products with very complicated shapes, high performance requirements, and small batch sizes
- In some high-end manufacturing fields, such as the medical industry and aerospace, titanium 3D printing combined with MIM materials and sintering advantages have strong market prospects

New Technology 3: Amorphous alloy (Liquid metal)

- Non-crystalline, and have a glass-like structure
- Good electrical conductivity
- Low shrinkage during cooling, and resistance to plastic deformation
- Better resistance to wear and corrosion
- Higher tensile yield strengths and higher elastic strain limits
- Ductility and fatigue strengths are lower


MIM assisted process - Liquid Silicone Rubber

Waterproof SIM card tray

Type-C connector waterproof seal

3C waterproof electronic products

The waterproof silicone ring of the smart phone is mostly formed on the original metal fittings. At the same time, the volume is smaller than the silicone ring used in general, and the compatibility with the casing and accessories is higher. It requires more precise (micro) injection molding technology. Automotive parts interface waterproof seal

Low-alloy steels

- Fe-2Ni
- Fe-8Ni
- 2200
- 2700
- 4605
- **4140**
- 100Cr6
- 8620
- **8740**
- 42CrMo4
- **1010**

Stainless steel

- 17-4PH
- **304L**
- 310N
- 316L
- 420
- 430
- 440
- PANACEA
- Duplex 2507

Soft magnetic alloy

- Fe-50Ni
- Fe-3Si
- Fe-50Co
- Fe-35Co

Low thermal expansion coefficient alloy

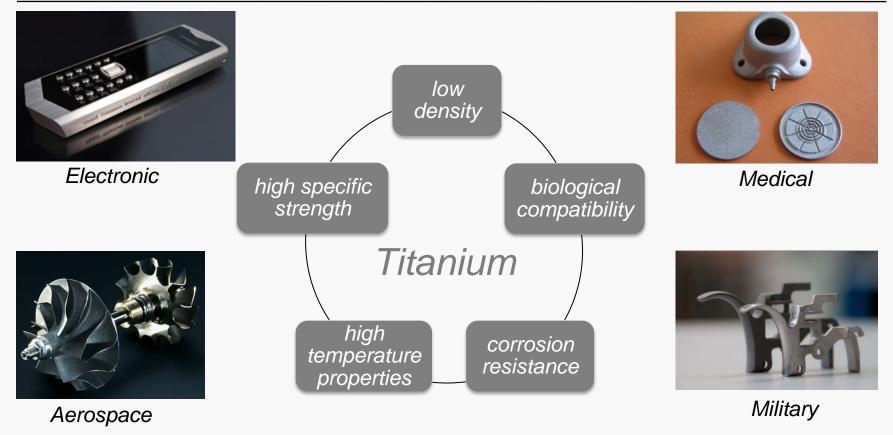
- Invar alloy
- Kovar alloy

Titanium alloy Tungsten alloy CP-Ti W-Ni-Fe

- Ti-6AI-4V
- Ti-Al intermetallic compound W-Cu

Copper alloy

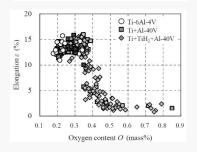
- Copper
- Bronze


More customizable alloys... Function

W-Ni-Cu

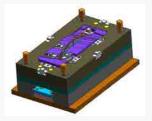
Appearance

Lightweight materials - Titanium Alloys

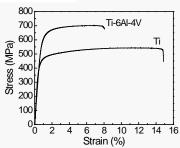


Lightweight materials - Titanium Alloys

Commercial MIM-Ti



- Only few companies have MIM-Ti capability
- Product quality is not good due to out of control the impurities

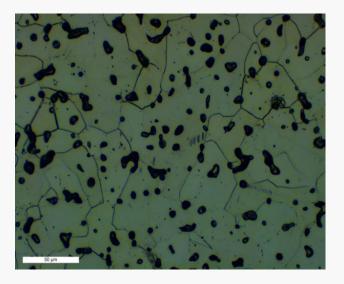


- Near net sharp all structures
- Extremely complex curved surface difficult to machining
- Only 6 grams in weight Good bio-compatibility, good corrosion resistance

MIM-Ti

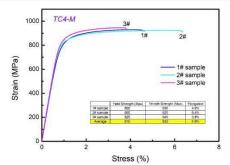
Solutions

- **Unique formula (**Add small amount of special elements)
- Special equipment (Patented equipment for mixing and injection molding)
- special process (De-binding and sintering)

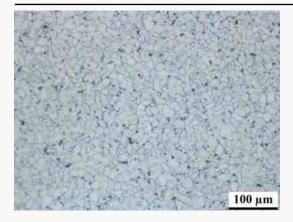

Typical composition

O (%)	N (%)	C (%)	Ti (%)
0.15-0.2	< 0.02	0.06-0.08	Balanced

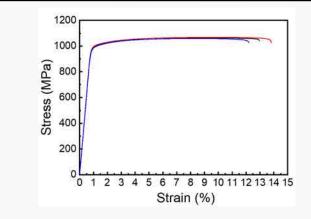
Characteristic Properties:


- ➢ Density: ≥4.3g/cm³
- ➢ Yield Strength: ≥450MPa
- ➢ Ultimate Tensile Strength: ≥510MPa
- Elastic modulus: 100-120GPa
- Elongation: ~15%
- ➢ Hardness: ~ 200 HV1

Typical composition

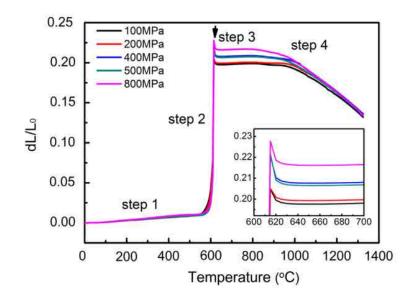

AI (%)	V (%)	O (%)	N (%)	C(%)	Ti (%)
5.5- 6.75	3.5- 4.5	< 0.3	< 0.05	0.06- 0.08	balanc ed

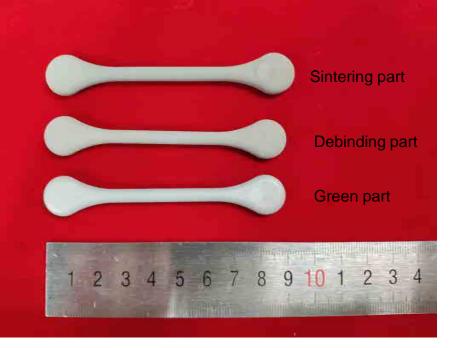
Characteristic Properties:


- > Density: ≥4.35g/cm³
- ➤ Yield Strength: ≥900MPa
- ➢ Ultimate Tensile Strength: ≥1000MPa
- Elastic modulus: 100-120GPa
- ➢ Elongation: ≥10%
- ➤ Hardness: ≥ 300 HV10

Lightweight materials - TC4 Products

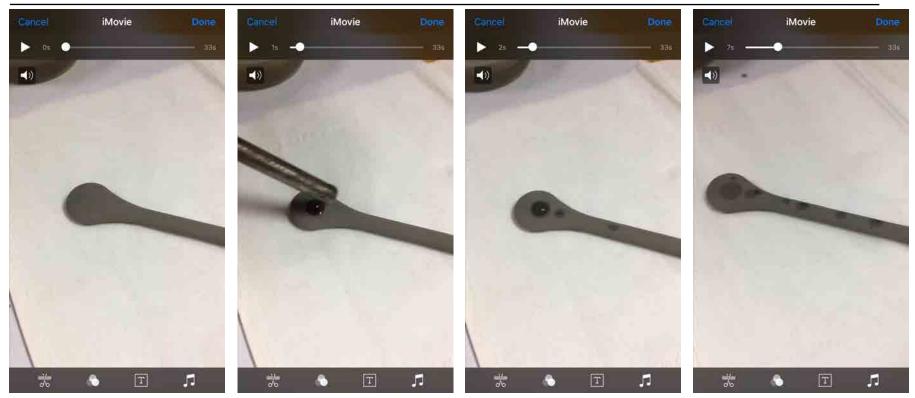
- By adjusting the microstructure of MIM-TC4 through a special process, an equiaxed crystal structure like forged titanium alloy is obtained, and the crystal grains are very small, and the mechanical properties are greatly improved
- Density greater than 99%, yield strength greater than 900MPa, tensile strength greater than 1000MPa, elongation greater than 10%
- Using lower cost powder reduces the overall cost of parts


	Mechanical Properties				
	Tensile Strength, min	Yield Strength (0.2 % Offset) min or range	Elongation in 4D, min, %	Reduction of Area, min %	
ASTM B348 Grade 2 Requirements	345 Mpa	275 MPa	20	30	
EP (as-sintered)	545 Mpa	450 MPa	15		
EP (MIM+HIP)	635 Mpa	537 MPa	30		
ASTM B348 Grade 5 Requirements	895 MPa	828 MPa	10	25	
EP (as-sintered)	1000 Mpa	900 MPa	15		


In addition to the elongation rate, pure titanium sintered parts have reached the ASTM B348 pure titanium grade 2 standard. After hot isostatic pressing, the mechanical properties have surpassed the grade 2 standard.

The sintering properties of Ti-6AI-4V titanium alloy surpass the ASTM B348 grade 5

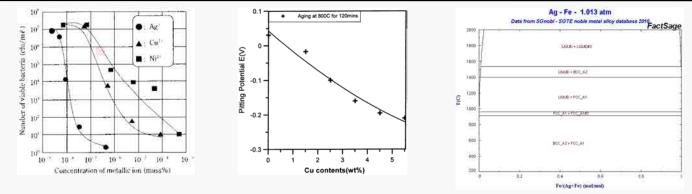
Lightweight materials - Porous Ti-AI intermetallic compound



Expansion of Ti-Al during sintering

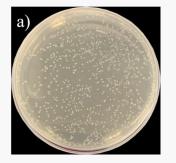
Lightweight materials - Porous Ti-Al intermetallic compound

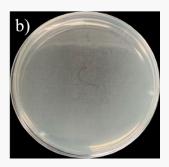
Good water or oil permeability


Lightweight materials - Aluminum Alloys

MIM-AI (lab stage) Cost 5 Productive Materials suitable efficiency mn Porous MIM aluminum alloy Post-processing Forming accuracy Mechanical Complexity properties --- Machining --- Die-casting ----MIM Compact MIM aluminum alloy

Antibacterial stainless steel



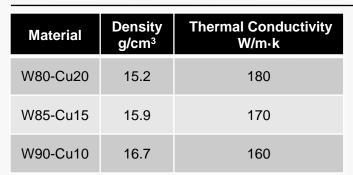

Ag > Hg > Cu > Cd > Cr > Pb > Co > Au > Zn > Fe > Mn > Mo > Sn

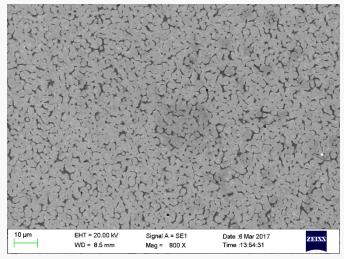
- > Among all metal elements, silver has the strongest antibacterial ability, about 100 times that of copper
- > Has a broader spectrum of antibacterial, can kill more types of pathogenic bacteria
- > Adding less than one-tenth of copper, has little effect on the performance of the original grade stainless steel
- > Silver and iron are typical immiscible element systems, and have almost no solubility in liquid or solid state
- The existing casting process is very prone to segregation of silver elements, and the improvement of heat treatment process is very limited
- The antibacterial performance is unstable, the energy consumption of the heat treatment process used is high and the effect is not obvious, so it is difficult to be used in industrial production

Antibacterial stainless steel

Cast silver-containing antibacterial steel

New silver-containing antibacterial steel




Conventional

- By adding a silver-containing compound to the feedstock, the compound decomposes to form dispersed silver particles \geq during sintering
- Excellent antibacterial performance, the broad-spectrum antibacterial reaches more than 99% \geq
- Stable antibacterial ability, dispersed and uniform silver particles \geq
- With permanent antibacterial ability, not afraid of scratching and cutting \geq

High Thermal Conductivity Material - Tungsten-Copper Alloys

W90-Cu10, as-sintered, typical microstructure

Application

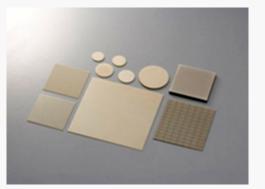
- electric contact parts
- welding electrodes
- heat sinks
- electric discharge machine

The copper-chromium alloy is an alloy formed by adding Cr and other trace alloying elements to Cu as a matrix. The alloy has high mechanical strength and hardness at room temperature and below 400 ° C, has good electrical and thermal conductivity, excellent wear resistance and wear reduction performance, and has resistance to high temperature oxidation, wear resistance and good processing performance, widely used in parts that require high strength, high hardness, high electrical conductivity and thermal conductivity at high temperatures.

Characteristic Properties:

- ➢ Density: ≥8.7g/cm³
- Yield Strength: 280MPa
- Hardness: 70~100 HV
- ➤ Thermal conductivity: 250 W/(m·K)

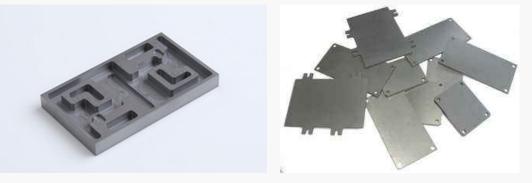
High Thermal Conductivity Material - Copper


- High thermal conductivity
- Good plasticity
- Good ductility
- High conductivity

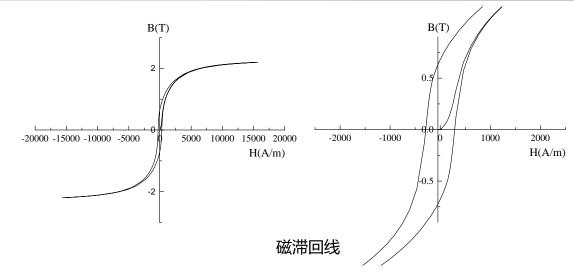
Characteristic Properties:

- Density: ≥8.5g/cm³
- Yield Strength: 69MPa
- Ultimate Tensile Strength: 207 MPa
- Elongation: ~30%
- > Thermal conductivity: 330 W/(m⋅K)

- → High thermal conductivity (about 320W / m · K), close to BeO and SiC, and more than 5 times that of Al_2O_3 ;
- Coefficient of thermal expansion (4.5×10⁻⁶ °C) matches Si (3.5-4×10⁻⁶ °C) and GaAs (6×10⁻⁶ °C);
- Excellent electrical properties (dielectric constant, dielectric loss, bulk resistivity, dielectric strength);
- Good mechanical properties, flexural strength is higher than Al₂O₃ and BeO ceramics, and can be sintered at atmospheric pressure;
- Good optical transmission characteristics;
- Non-toxic.



High Thermal Conductivity Material - High silicon aluminum alloy


Content	Coefficient of thermal expansion ×10 ⁻⁶ /K	Thermal conductivity W•m ⁻¹ •K ⁻¹	Ultimate Tensile Strength MPa	Yield Strength MPa
Al-Si27	17	160	160	110
Al-Si42	13	150	210	155
Al-Si50	11	140	150	125
Al-Si60	9	129	120	-
Al-Si70	7	120	110	-

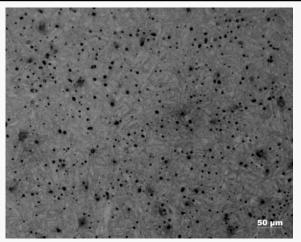
- Low coefficient of thermal expansion
- Good thermal conductivity
- Low density
- Easy to process

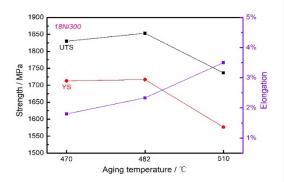
Soft magnetic alloy - Fe-Co alloy

Magnetic properties

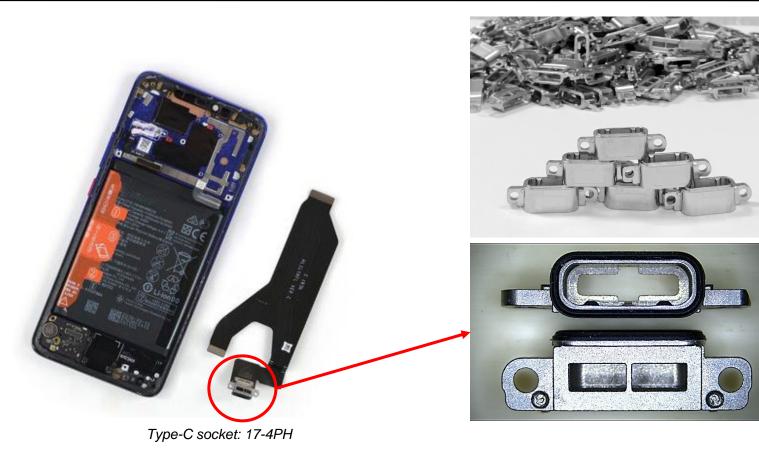
	Bs (T)	Br (T)	Hc (A/M)	μ_{max}
Fe-35Co	2.2	0.65	248	1146
Fe-50Co	2.3	1.60	127	2000

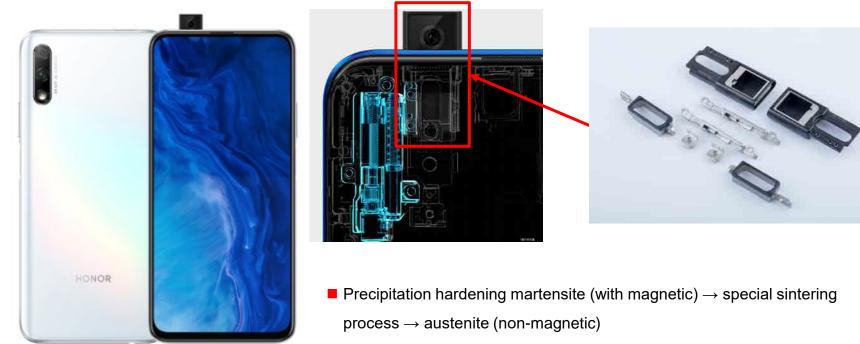
Application


- Motor parts
- Bluetooth earphone
- Automated production line, etc.



Features of Maraging Steel


- Ultra-high strength at room temperature (yield strength greater than 1300MPa)
- Simple heat treatment to ensure minimal deformation
- Excellent fatigue toughness compared to quenched steel at the same strength level
- Good welding performance
- Easy machining, low machining distortion


Stainless steel Products in EP - 17-4PH

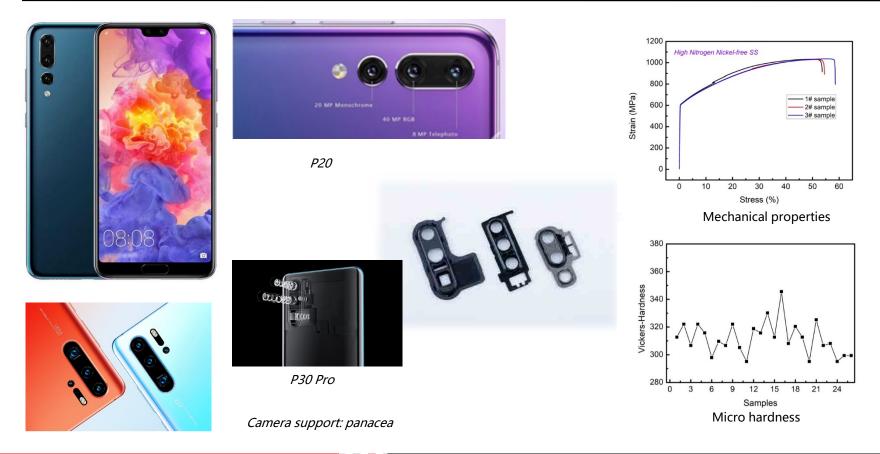
Stainless steel Products in EP - non-magnetic 17-4

Higher hardness and strength than general sintered austenitic stainless steel

Improved salt spray resistance

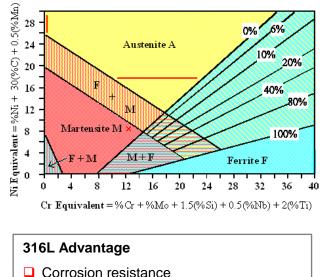
Huawei HONOR

Stainless steel Products in EP - for parts with appearance requirements

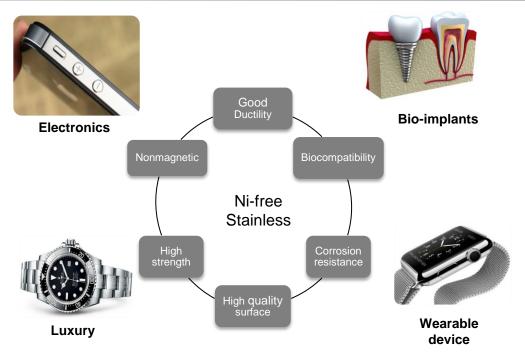


Xbox Elite Wireless Controller

- Uses 316L and 17-4PH stainless steel
- 316L stainless steel is mainly used for parts that need mirror polishing
- 17-4PH is used for parts requiring magnetic attraction
- The requirements for injection molding and sintering process are extremely high, the surface of the green part must not have any black lines, and the friction marks between the sintering jig and the product should also be considered to avoid


Stainless steel Products in EP - Nickel-free stainless

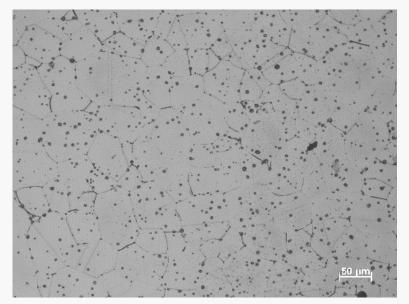
Stainless steel Products in EP - Nickel-free stainless



- Good ductility
- Polishing, high quality surface

316L Disadvantage

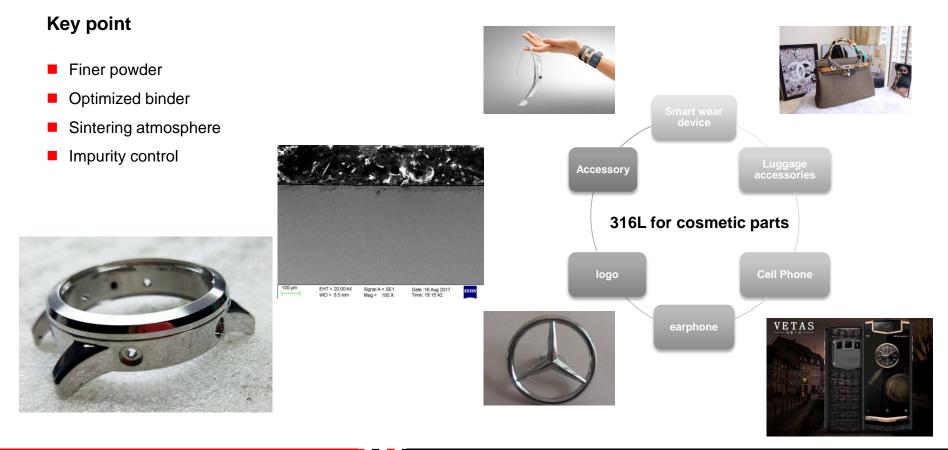
- Low strength, low hardness
- Contains large amount of nickel, leading to allergic reactions of human body



Typical composition

C %	Cr %	N %	Ni %	Mn %	Mo %	Si %	Fe %
≤0.2	16.5-17.5	≥0.6	≤0.1	10-12	3.0-3.5	≤1	balanced

Characteristic Properties


Density	≥7.6 g/cm³
Yield Strength	≥560 MPa
Ultimate Tensile Strength	≥950 MPa
Elongation	≥50%
Hardness	280-350 HV

Metallography

Stainless steel Products in EP – 316L for Cosmetic Parts

Super-Duplex stainless steel (2507)

Company of the State of the Sta

Main characteristics		316L	304	17-4PH	2507		
 Very high resistance to pitting and crevice corrosion Excellent resistance to stress corrosion cracking (SCC) 	Yield Strength	180	170	750	530		
 Excellent resistance to stress corrosion cracking (SCC in chloride bearing environments High resistance to general corrosion in acids 	Ultimate Tensile Strength UTS / MPa	540	630	1060	730-930		
Excellent resistance to erosion corrosionExcellent resistance to corrosion fatigue	Elongation / %	60	60	3	25		
Very high mechanical strength	Hardness / HV	120	130	320	300		
Good weldability	PREN*	23-29	17-21	below 300 series	> 40		
	Microstructure	Austenite	Austenite	Martensite	50:50 Austenite / Ferrite		
	Magnetism	not magnetic	not magnetic	ferro magnetic	ferro magnetic		
Austenite + Ferrite	PREN* = pitting corrosion resistance number						

Foldable phones hinge materials

Performance requirements

- High yield strength: greater than 600MPa
- Good wear resistance (high hardness): greater than HV300 or HRC35
- Light weight: achieved by material density or structural design

Size requirements

- Strict tolerance of rotating surface: hole position, arc surface
- Some parts are long and thin, with high flatness and straightness.
- 3D shape is complex, suitable for PIM process
- Tolerance challenges PIM process limits

17-4PH

Fe-8Ni

Ti-6AI-4V

Amorphous alloy

	Density	Yield Strength	tensile strength	Elongation	Hardness	advantage	Disadvantage
17-4PH	7.68	650 (as-sintered) 1000 (HT)	1000 (as-sintered) 1100 (HT)	>6% (as-sintered) >3% (HT)	280-320 HV (as-sintered) 350-450 HV (HT)	Good corrosion resistance, bright appearance and low price	Heat treatment is easy to deform, too tight tolerance cannot be guaranteed
Fe-8Ni	7.60	400 (as-sintered) 1100 (HT)	700 (as-sintered) 1250 (HT)	3% (as-sintered) <1% (HT)	150-280 HV (as-sintered) 400-550 HV (HT)	Cheap price and simple heat treatment process	Poor corrosion resistance and high brittleness
Ti-6Al-4V	4.25	820	950	>2%	300 HV	resistance and light	Expensive, difficult to process (Tapping)
Amorphous alloy	6.30		Bending strength 2200	<1%	500 HV	High flexural strength, not easy to break, good wear resistance	Poor elongation, easy to break
Zirconia ceramic	6.10		Bending strength 700	<1%	1300 HV	High hardness and good wear resistance	High brittleness

Ceramic

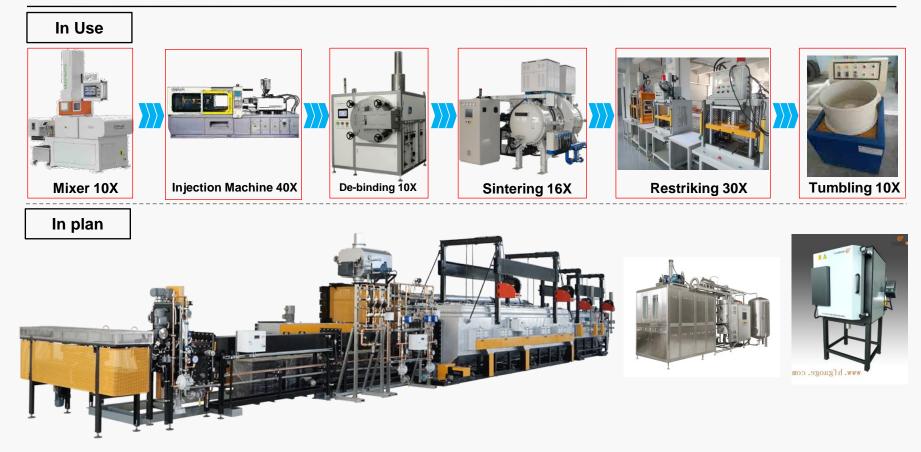
Chemical stable Oxidation resistant Electrica insulator	n t	Ha We resis Refra	ar- stant		onmagnel Thermal nsulators	7				
Properties	Unit	99%AI ₂ O ₃	3Y- TZP	Si ₃ N₄	SiC	ZT A	Super- ZrO ₂			
Density	g/cm ³	>3.5	> 5.8	> 3.0	>3.0	> 4.7	>6.09			
Hardness	HRA	91	88~ 99	92~ 93	92~94	91	93		DL	
Bend strength	MPa	350	700	700	500	55 0	>1600			
Compressive strength	MPa	3000	210 0	350 0	2800~3 000	21 00	3000			
Fracture toughness	MPa.M -3/2	2~4	10	7	5	6.7	≥18	500		
CTE	×10⁻ 6/°C	6.5~8. 4	10.2	3.2 ~4	4.3	7	10.2			
Resistivity	Ω.Cm	10 ¹⁴ ~1 0 ¹⁶	>10 10	>10 14	<200	>1 0 ¹⁴	10 ¹⁴			
Elastic modulus	GPa	260	300	410	-	30 0	500			

Capabilities

Hardware and Software

- Works closely with the Powder Metallurgy Laboratory of SUSTech & USTB to develop new materials and processes for powder injection molding, liquid metal, 3D printing, etc.
- Currently has 35 production lines and some special materials processing equipment. Plans to increase to 46 production lines by the end of 2020
- Construction of a high-level powder metallurgy laboratory, planning to apply for the National Engineering Center around 2021.

Core-competitiveness


- Focus on MIM new materials, master the core technology on Ti, Cu, Al, W, special stainless steels (Panacea, Duplex stainless steel), ironcobalt alloy, Fe3Si & CeramicEtc.
- Development of liquid metal and titanium alloy 3D printing technology
- Research the MIM technology with low-cost Ti powder
 (Special formula, Special process)

Main Producing Devices

Mold center

Device name	Brand	Coming soon	In plan	Initial monthly capacity		
CNC	MIKRON、Quick Jet	2	3			
Wire cutting	+GF+、SODICK	2	4	Precision forming mold: 10sets		
EDM	MAKINO, SODICK	2	4	, i i i i i i i i i i i i i i i i i i i		
Grinder	SEEDTEC、Joen Lih	3	5	Shaping mold: 30sets		
Milling	GENTIGER	3	5			

CNC (fanuc) ×15

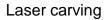
CNC (taikan) ×3

Polishing and drawing machine

Drilling machine×1

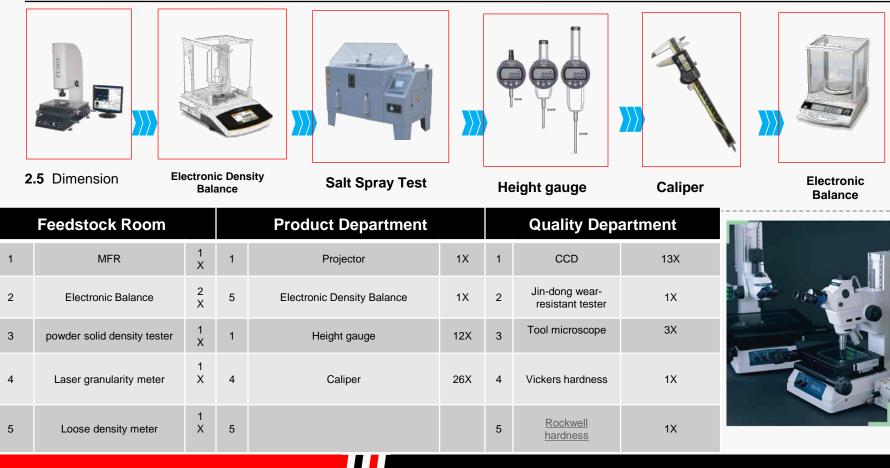
Wet polishing machine

Wire cutting machine×5 (Sodick)


Wet polishing machine

lathe×3

Pad printing


Welding

Air tightness test

Life span test

Equipment for Quality control

Equipment for Quality control

Friction Testing Machine

pencil hardness tester

Friction Testing Machine

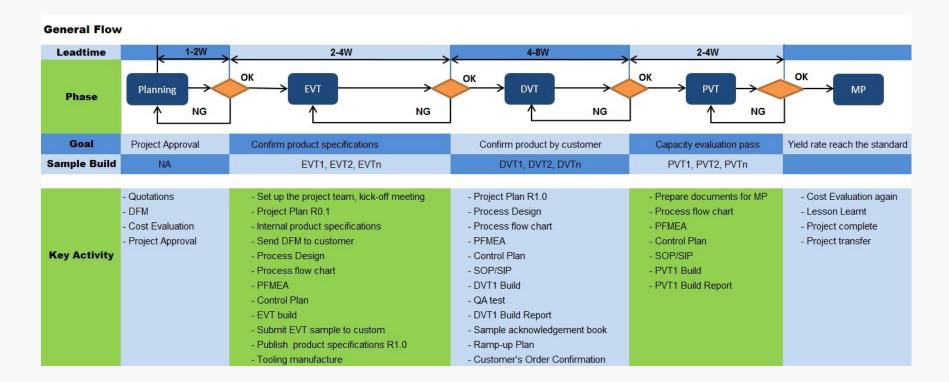
Tensile test

Detection Indicator:

Surface defects, dimensional measurement, thread inspection, feature inspection, assembly accuracy, presence or absence of gaskets and fasteners, lack of material, internal hole blockage, cracking, burrs, solder joints, imprints, etc.

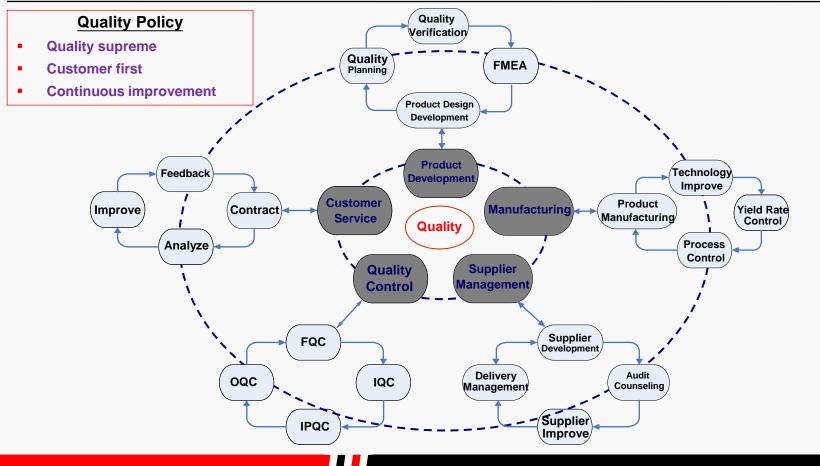
Detection speed:

≤ 0.03~0.05 seconds


Detection accuracy:

±0.01mm

Visual inspection equipment


New Product Introduction Process

Quality Assurance System

