

DSTAP Chloride

Catalog Number: 14486

DESCRIPTION

DSTAP chloride (1,2-distearoyl-3-trimethylammonium-propane chloride) is a cationic lipid with a variety of potential applications, including transfection and drug delivery.

SPECIFICATIONS

CAS Number	220609-41-6
Purity	>99%
Molecular Weight	702.6
Appearance	solid
Storage	-20°C under argon gas
Linear Formula	C ₄₂ H ₈₄ NO ₄ Cl
Synonym(s)	1,2-distearoyl-3-trimethylammonium-propane chloride

LIPOSOME SYNTHESIS

Materials

- DSTAP
- Purified H2O or Phosphate-buffered saline (PBS) at pH 7.4
- Chloroform (or other organic solvent)

Equipment

- 5 mL Glass beaker
- Glass round bottom flask
- Rotary evaporator
- Water bath sonicator
- Vortex Mixer
- Sterile polystyrene storage tube
- Pipette with appropriate tips
- Calibrated scale
- Laminar flow hood with vacuum
- Extruder with appropriately sized polycarbonate membrane
- Block heater

Prepare Stock Solution

- 1. Remove DSTAP from freezer (-20 °C) and thaw to room temperature.
- 2. Weigh 25 mg of DSTAP into glass vial.

- 3. Add 2.5 mL of chloroform to the glass vial; agitate until dissolved.
- 4. (Optional: Incubate at 37 °C for 10 minutes to facilitate homogenization).
- 5. (Optional: Store stock solution at -20 °C under nitrogen or argon).

Preparation of Lipid Film

- 1. To create lipid film, place stock solution in round bottom flask and use a rotary evaporator to remove the organic solvent.
- 2. Evaporate chloroform with dry nitrogen flow in fume hood.
- 3. To remove any residual organic solvent and ensure the lipid film is fully dry, place the vial in a vacuum pump at a temperature of 45-60 C overnight.

Rehydration

- 1. Add 1 mL filtered H₂O or PBS to lipid film.
 - a. Warm to 37 °C for 10-30 minutes for homogenization; gently vortex as needed.
 - b. If dry lipid film remains on flask, sonicate for 15 s in a water bath sonicator.

Extrusion

- 1. Prepare extruder:
 - c. Assemble the extruder with 400 nm polycarbonate membrane and lubricate with 1 mL filtered H₂O or PBS, then discard solvent.
- 2. Extrude 1 mL of solution by passing through the extruder 5 times.
 - a. Repeat with smaller polycarbonate membranes (200 nm, 100, nm, and 50 nm) if smaller sized liposomes are desired.
- 3. Store suspension in a glass vial under nitrogen or argon at 4 °C until use, up to one month.

