

Troubleshooting On-site

If there is a problem with the system, and the basic system checks have been done, further troubleshooting can be conducted on-site. This module will cover the basic on-site troubleshooting which can be used to resolve most issues. The topics include:

- Checking the power
- Using PumpScanner
- Using the display lights

Contents

1.	Power check	2
1.1.	Check overall output	2
	Detailed PV testing	
	Troubleshooting with PumpScanner	
	On-site troubleshooting without PumpScanner	

1. Power check

WARNING: Power checks should only be conducted by trained technicians.

A power check is recommended before troubleshooting is conducted, as this is the root cause of most problems. This should preferably be done in full sunlight.

A multimeter that can read DC amps (up to 10A) is required for this process.

1.1. Check overall output

This can be done with PumpScanner if the controller power light is on. (Go to Pumps, and tap *Actual Data*). Or it can be done with a DC multimeter at the PV Disconnect.

Compare with *Table 1* (below) to see if sufficient power is generated to run the pump.

Table 1: Voltage requirements for pump to run

Pump Controller	Min. Vmp for full speed	Max. Voltage
PS2 - 150	17V (DC)	50V (DC)
PS2 - 200	34V (DC)	100V (DC)
PS2 - 600	68V (DC)	150V (DC)
PS2 - 1800	102V (DC)	200V (DC)
PS2 - 4000	238V (DC)	375V (DC)

If power readings are outside of this range, and full, direct sunlight is available, then a panel or a connection is faulty. Proceed to detailed power testing.

1.2. Detailed PV testing

Warning: Don't touch any exposed wire when connecting or disconnecting panels. Ideally the panels should be covered when connecting.

If full sunlight is available, and the power is not as expected, then either an improper connection has been made, or a panel is faulty. The following steps should be taken:

- 1. Inspect all cables for damage
- 2. Check the panel wiring arrangement. This should agree with the initial COMPASS report
- 3. Measure the Isc of each string; a faulty string will have a significantly lower amperage.
- 4. Turn the Isolator Switch
- 5. Measure the individual panel Voc and Isc.

The following table gives a summary of how to measure each of the values, and what to compare with.

Table 2: Panel electrical characteristic measurement guide

Where	Value	How	Compare
Single Panel	Voc	Connect multimeter leads to the +ve and –ve panel leads and measure voltage.	Compare with the name plate data.
	Isc	Connect the panel leads together and use clamp meter to measure DC current OR use a multimeter between panel leads (usually 10A max).	Compare with the name plate data.
String	Isc	Use DC clamp meter to measure each string before isolator.	Compare each <i>string</i> , the faulty string will read lower. Should be within 15% of panel name plate data depending on sunlight

If the panels are ok but strings are not reading expected values, then a connection is faulty, and will need to be identified and repaired.

Any faulty panels will need to be replaced.

If no strings/panels are faulty, then the controller is likely faulty and the appropriate board needs to be replaced. Usually this is the main board that needs to be replaced.

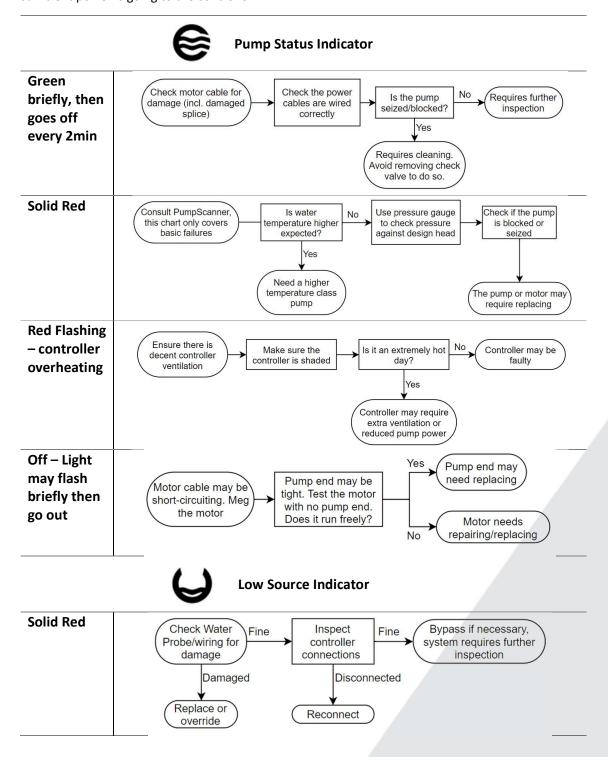
2. Troubleshooting with PumpScanner

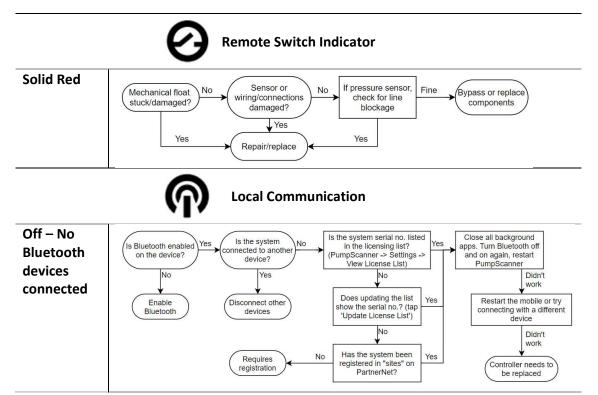
If power is not the issue, then PumpScanner can be used to identify most issues. Table 3 gives a summary of the faults identified by PumpScanner.

To find the fault tap $Pumps \rightarrow Select$ the pump $\rightarrow tap$ Actual $Data \rightarrow Scroll$ down to Pump off reason.

Table 3: Summary of "pump off reasons" in PumpScanner

Error	Description	Actions
Source Low	The sensor has detected a low source.	Check for broken sensor.
	The pump will turn on 15min after water is	Wait for source to recover.
	registered again.	
Remote Switch	The remote switch sensor has been	Check for broken sensor.
	triggered. The pump will turn on 15min	Check the storage is full.
	after the sensor resets.	
Water Sensor	The water sensor has detected an event.	Check for a low source, or an air
		leak in the pipe
Overload	The controller has detected an overload and	Toggle on/off switch to reset.
	stopped the motor.	Inspect the system for faults.
	Many possible issues may be causing this. A	Check for dirt accumulation or a
	pump inspection may be req'd.	seized rotor/stator.
Overvoltage	The overvoltage limit is exceeded, so	The array needs to be
	controller will not start.	reconfigured to spec.
Manual	The controller has been stopped in	Open <i>Operational Settings</i> and
software	PumpScanner.	look under <i>Pump Speed</i> .
switches off		
Sun Sensor	Irradiation is below minimum setting.	Change under installation
		settings.
Pressure/	Controller has stopped due to high/low	Change under Feature Settings.
Liquid Level	pressure. Pump will start when the pressure	
Sensor	returns within set range.	
Constant	The controller stopped the pump because	Change under Feature Settings
Pressure/flow	the pressure or flow rate exceeded the set	and look under Pump Control.
control	range.	Use Advanced Settings to contro
	Will automatically restart and try to resume	adjustment speed. This changes
	constant pressure/flow.	how fast the pump will speed
		up/down to keep constant
		pressure/flow.
		A low setting may result in high
		overshoot.
Daily Amount	Controller has stopped because the set	Change under Feature Settings.
-	pumping amount has been reached.	
	Controller will automatically start the next	
	day.	


Battery Low	Input voltage low, pump stopped to prevent	Pump will restart when it has
(LVD)	harm to battery.	recovered.
Timer	Controller is stopped by software setting.	Change under Operation
		Settings.
Min. Speed	The min. motor speed required to run the	Wait for greater sunlight.
Timer	pump can't be reached.	Change in Operational Settings
	Absolute min. is set to avoid damage.	under <i>Pump Speed</i> .
	Advanced Information	
Analog Input 1	Controller does not receive plausible	Check connection and polarity of
(or 2) Error	measurements from Analog input 1 (or 2).	sensor.
	The valid range is 4-20mA.	Replace sensor if suspected
		faulty. If problems persist,
		replace the IO board.
Over-	Reduced power/stopped pump because	Will restart when it has cooled
temperature	controller temperature is too high.	down sufficiently.
	Normally due to insufficient ventilation.	Improve ventilation if req'd
Sun Sensor	Controller is not receiving plausible	Check connection and polarity o
Fault	measurements from the Sun Sensor	Sun Sensor.
	module.	Replace sensor if suspected
		faulty. If problems persist,
		replace the IO board.
Internal Comm	The main board has to be replaced.	Normally replace entire
Error (Bt) or		controller.
(mppt)		
Low Power	Pump stopped due to low power, likely	If sufficient light is available, go
	morning, evening, or sudden clouds.	through power checks
Short Circuit	The controller has detected a high current	The system must be inspected
Motor Cable	peak and stopped the motor to protect	for a fault. Check motor cable
	itself from damage.	especially.
Internal Comm	The controller detected a problem with the	Check LED board wiring.
Error (LED)	LED board.	If fine, replace the LED board.


3. On-site troubleshooting without PumpScanner

If PumpScanner can't be used for a system inspection, or does not give a clear answer, the LED status indicators is the next recommended method for determining the cause of failure.

System inspections using the LED indicators should only be conducted once it is certain that sufficient power is going to the controller.

Note: PumpScanner will usually give a more detailed assessment of any faults, and may prevent the need to pull the pump out for inspection.

It is possible to turn the pump on/off using the switch on the controller in the bottom left. This does NOT turn the controller on or off, just power to the pump.

A DC Isolation switch is required to isolate power from the controller. It is recommended to leave the controller sit for a couple of minutes before doing anything inside the controller, to allow the capacitors to discharge (especially PS2-4000).

It's always recommended to connect a motor for testing the controller

The controller is designed to be easily repairable if there is a board failure internally. The Main board, IO Board and LED Board can all be replaced easily. Replacing the power board is more complicated, and generally it is better to get a replacement controller.