Chemical, Pharmacological, and Toxicological Assessment of 6-Methylnicotine <u>Andrew Cheetham¹, Susan Plunkett^{1,2}, Lynn McFadden¹, Mariano Scian¹, Sarah Marking², Bonnie Coffa², Preston Campbell²,</u>

and Stan Gilliland III²

Enthalpy Specialty Labs, Richmond, VA, USA; ² Consilium Sciences, Richmond, VA, USA. Poster #5, 76th Tobacco Science Research Conference, September 24–27, 2023, Norfolk, VA, USA

Abstract

There is interest in nicotine-related alkaloids for both recreational use and pharmaceutical applications such as smoking cessation and central nervous system disorders conditions such as Parkinson's, Tourette's, ADHD. Nicotine is one of many alkaloids produced by the tobacco plant (*Nicotiana tabacum* species) and more recently synthesized for commercial use. The compound 6-methylnicotine (CAS# 101540-79-8) has been identified as a nicotine analog of interest based on its chemical structure, sensorial properties, and commercial availability. Chemical, pharmacological, and toxicological assessments were conducted on 6methylnicotine and compared to pharmaceutical grade (S)-nicotine. Samples of 6-methylnicotine analyzed included both freebase and salt forms, as well as in e-liquid formulations containing propylene glycol (PG) and vegetable glycerin (VG) for use in an electronic nicotine delivery system (ENDS). Chemical analysis confirmed the sample was 6methylnicotine, racemic, and ~98% pure utilizing ¹H NMR, chiral UPLC-UV, and GC-MS. The aerosol transfer efficiency of 6-methylnicotine was similar to that of nicotine (82.5 ± 0.6 % vs. 85.6 ± 2.9 % for freebase forms). Archival pharmacological data indicates that 6-methylnicotine is similar in potency and binding affinity to that of (S)-nicotine in *in vivo* and *ex vivo* models. Regulatory in vitro toxicology testing (Neutral Red, Ames, and Micronucleus) demonstrated 6methylnicotine salt e-liquid formulations have similar cellular cytotoxicity and mutagenicity/genotoxicity responses to the analogous (S)-nicotine salt e-liquid formulation. The totality of available evidence indicates that 6-methylnicotine has comparable chemical, pharmacological, and toxicological properties to the more widely used nicotine.

Introduction

(S)-nicotine is the primary active ingredient in a range of tobacco and nicotine consumer products and in smoking cessation drug therapies such as Nicorette[™] gum, lozenge, and mini-lozenges. Since April 2022, when the "synthetic nicotine loophole" was closed by US Congress, all nicotine-containing products are now required to submit a PMTA to FDA to receive marketing approval, regardless of the nicotine source (tobaccoderived or synthetic). This process is a costly, time-consuming, unpredictable, and uncertain. Consequently, there is interest in identifying alternative agents that act in a manner similar to nicotine. One such molecule, 6methylnicotine, was identified during tobacco industry research conducted between 1977 and 1982 as having similar pharmacological effects in animal models, though it was not incorporated into any marketable products. Recent publications¹⁻³ seem to indicate that interest in alternate nicotine analogs is rising again. Herein, we present the results of chemical, pharmacological, and toxicological assessments of 6-methylnicotine conducted to fill the existing knowledge gap.

Materials & Methods

Materials

• All nicotine and 6-methylnicotine-containing materials were donated by SS Vape Brands, with the exception of freebase nicotine which was sourced from MilliporeSigma (St. Louis, MO). ENDS devices used for aerosol studies were also provided by SS Vape Brands.

Methods

- GC-MS EI: Agilent HP-5ms, 15 m × 250 µm × 0.25 µm; 70 to 300 °C, 20 °C/min.
- Chiral UPLC-UV: AM-271, AZYP NicoShell SPP, 100 mm × 4.6 mm, 2.7 μ m; 0.2 % NH₄HCO₂ in methanol. • ¹H NMR: Bruker NanoBay AVANCE III 400 MHz NMR spectrometer, conducted at the Virginia Commonwealth University (VCU) NMR Center.
- Aerosol Transfer Efficiency: *Devices* Vaporesso[®] Tarot Nano (tank-based) for freebase formulations; Vaporesso[®] Zero (pod-based) for benzoate salt formulations; Collection – ISO 20768 conditions, pad collection and extraction into isopropanol; Analysis – AM-224, GC-FID, Restek Stabilwax-DA, 30 m × 320 µm × 1 µm, 80 to 240 °C, 20 °C/min.
- Neutral Red Uptake: AM TOX-002, based on ISO 10993:2009 and OECD Guideline 129 (2010); tested in BALB/c 3T3 (mouse fibroblast) and A549 (human lung epithelial) cell lines.
- Bacterial Reverse Mutation Assay (Ames): AM TOX-003, based on OECD Guideline 471 (2020; tested in TA98, TA100, TA102, TA1535, and TA1537 strains of S. Typhimurium.
- Micronucleus Test: AM TOX-020, based on OECD Guideline 487 (2023); tested in human lymphoblast TK6 cells; scored using flow cytometry (MicroFlow in vitro 250/50 Kit, Litron).

Chemical Characterization

In Silico Toxicology and Pharmacological Review

112

11.8

98.6

7.28

• In silico toxicological models were used to predict the toxicity of 6MeN and compare to Nic. Five quantitative Toxtree), and (5) OECD Toolbox.

Flash point (°C)

Viscosity (cP)

- Overall, toxicity predictions were nearly identical for 6MeN and Nic across all models.
- A review of industry-funded research available within the Truth Tobacco Industry Documents repository⁶ was conducted.
- Limited industry-sponsored pharmacological studies on nicotine analogs were conducted by the Institut für Biologische Forschung (INBIFO) between 1977 and 1982.
- The *in silico-predicted similarity* was supported by the similar pharmacology shared by the two compounds (Table 2)
- However, caution should be taken since these studies are not peer-reviewed and used potentially outdated methodologies
- For instance, a 3-fold stronger affinity for rat brain nicotinic receptors was shown for 6MeN,⁷ but a more recent peer reviewed study indicated it was actually slightly weaker².

	"Nicotine" Conc. (mg/g)				
Form	Active Agent	E-Liquid	Aerosol	Transfer Efficiency (%)	
Freebase	Nic	43.0 ± 0.0	36.8 ± 1.2	85.6 ± 2.9	
	6MeN	41.5 ± 0.1	34.2 ± 0.2	82.5 ± 0.6	
Benzoate	Nic	40.4 ± 0.1	36.4 ± 0.8	90.2 ± 2.1	
	6MeN	42.3 ± 0.1	37.4 ± 2.0	88.3 ± 4.6	

structure-activity relationship (QSAR) models were used: (1) ICH M7, (2) Derek, (3) Sarah, (4) VEGA (incl.

Table 2. Relative affinity and potency of 6-methylnicotine compared to (S)-nicotine.

Affinity Experiments (Rat Model)	Relative Affinity (Higher = stronger)	Ref.
Brain	3.03	[7]
Nic	0.38	[7]
ACh - K _i (relative)	0.08	[7]
nAChR radioligand binding (rat brain)	0.70	[2]
	Relative Potency	
Functional Experiments	(Higher = more	Ref.
	potent)	
LD50 (mice)	3.83	[8]
ED50 (mice; effect: convulsions)	4.22	[8]
Model 03 Guinea Pig Ilieum	1.96	[8]
lodel 05 Rat Phrenic Nerve-Diaphragm	0.46	[8]
Model 06 Guinea Pig Auricle	1.47	[8]
Model 09 Rabbit Aortic Strip	1.10	[9]
Blood Pressure (Increase by 25%)	0.42	[7]
Drug Discrimination	1.09-2.19	[7]
Prostration	1.08	[7]

Toxicology

Test Samples

All toxicological testing was performed on 4.8% benzoate sal e-liquid formulations in PG-VG (1:1) with tobacco flavoring.

Cytotoxicity – Neutral Red Uptake (NRU) Assay

- compartments.
- not be determined for either formulation (Figure 5).

(Ames Test)

- Dosing 0 to 5000 µg/plate; incubated for 48–72 h.
- both agents (Figure 6).
- (0 µg/mL dosage) at all doses.
- Both 6MeN and Nic show no mutagenic activity.

observation of micronuclei in daughter cells.

- liquid) under three conditions:

- genotoxicity under all conditions (Figure 7).

Summary

- ENDS devices.
- activity.

References

[1]	Dukat, M. et al., Synthesis, receptor bindi
[2]	Dukat, M., et al., $(-)6$ -n-Propylnicotine ant
[3]	Qi, H., et al., <i>Comparative analyses of tran</i> <i>Vitro</i> , 2023, doi: 10.1016/j.tiv.2023.105661
[4]	Source: EPA CompTox Chemicals Dashbo conflicts in PubChem." 6MeN predictions
[5]	Source: EPA CompTox Chemicals Dashbo chemical identifiers."
[6]	Truth Tobacco Industry Documents, https://
[7]	INBFO, https://www.industrydocuments.uc

enthalpy SPECIALTY LABS www.enthalpyspecialtylabs.cor

• Identifies cytotoxic agents via their ability to impair a cell's ability to incorporate the neutral red dye into lysosomal

 Dosing 0.08 to 5 mg/mL e-liquid (10 mg/mL dose excluded) due to >30% osmolality change); cells incubated for 48 h.

• No substantial cytotoxicity observed and IC₅₀ values could

Mutagenicity – Bacterial Reverse Mutation Assay

• Identifies mutagenic agents via restoration of histidineindependency to histidine-dependent bacterial test strains.

• No dose-response behavior observed in any test strain for

• Revertant formation is comparable to the vehicle control

Genotoxicity – *in vitro* Micronucleus (MN) Test

• Identifies agents that induce cytogenetic damage via the

TK6 cells treated with serial dilutions (7200 to 847 µg/mL e-

• Schedule (i): short term (4 h) with no metabolic activation

• Schedule (ii): short term (4 h) with metabolic activation.

• Schedule (iii): long-term (22 h) with no metabolic activation • Both formulations were determined to be negative for

Figure 5. Neutral Red Uptake results for 6MeN and N e-liquid formulations (n = 9).

(right) e-liquid formulations (n = 6).

Figure 7. Micronucleus Test results for 6MeN (left) and Nic (right) e-liquid formulations (n = 4)

• 6-Methylnicotine has similar chemical characteristics to (S)-nicotine and behaves similarly in

• In silico toxicological and historical pharmacological studies suggest somewhat comparable

• 6-Methylnicotine exhibits comparable toxicological behavior to (S)-nicotine with no mutagenic or genotoxic activity and limited cytotoxicity.

• While initial experiments suggest 6-methylnicotine could be a suitable replacement for nicotine, pharmacological and epidemiological studies are needed.

ing and QSAR studies on 6-substituted nicotine derivatives as cholinergic ligands. Eur. J. Med. Chem., 1999, 34(1), 31-40.

tagonizes the antinociceptive effects of (-)Nicotine. Bioorg. Med. Chem. Lett., 2002, 12(20), 3005-3007.

nscriptome sequencing and carcinogenic exposure toxicity of nicotine and 6-methyl nicotine in human bronchial epithelial cells. Toxicol. In available online 14 August, 2023 oard, accessed September 11, 2023. Data Quality Level 4: "Programmatically curated from ChemID, unique chemical identifiers have no

based on CAS# 13270-56-9, (S)-6-methylnicotine, since no information is available for racemic 6MeN (CAS# 101540-79-8. board, accessed September 11, 2023. Data Quality Level 1: "Expert curated, highest confidence in accuracy and consistency of unique

/www.industrydocuments.ucsf.edu/tobacco, accessed 11 September, 2023. csf.edu/docs/gscv0119, accessed 11 September, 2023.

[8] INBIFO, https://www.industrydocuments.ucsf.edu/docs/prjb0115, accessed 11 September, 2023.

[9] INBIFO, https://www.industrydocuments.ucsf.edu/docs/mnjw0118, accessed 11 September, 2023