PLAYFUL MATH SINGLES

Cames, Number Play,
Writing Activities, Problem Solving, and Creative Math for All Ages

DENISE
 GASKINS

Ruthor of Let's Play Math: How families Gan Learn Math Together-and Enjoy It

From My Journaling Beta-Testers

"We really enjoyed these!"
"I remember doing pages and pages of dull equations with no creativity or puzzle-thinking, but now as a homeschool mom, I'm actually enjoying math for the first time! My daughter's math skills have skyrocketed and she always asks to start homeschool with math."

"Thank you for a great intro to Playful Math!"

"All of the kids were excited about their journals. My oldest kept going without prompting and did several more pages on his own."
"We had a lot of fun doing your math prompts. We had never done any math journaling before, but we will certainly integrate this into our weekly routine from now on."

A PLAYFUL MATH SINGLE

312 Things To Do Math Journal

GAMES, NUMBER PLAY, WRIITING ACTIVIIIIES, PROBLEM SOLIVING, AND CREATIVE MATH FOR ALL ACES

Denise Gaskins

Tabletop Academy Press

```
© 2022 Denise Gaskins
Print version 1.0
All rights reserved.
Except for brief quotations in critical articles or reviews, the purchaser or reader may not modify,
copy, distribute, transmit, display perform, reproduce, publish, license, create derivative works
from, transfer or sell any information contained in this book without the express written permis-
sion of Denise Gaskins or Tabletop Academy Press.
Tabletop Academy Press, Boody, IL, USA
tabletopacademy.net
```

ISBN: 978-1-892083-61-6
Library of Congress Control Number: 2021924569

Disclaimer: This book is provided for general educational purposes. While the author has used her best efforts in preparing this book, Tabletop Academy Press makes no representation with respect to the accuracy or completeness of the contents, or about the suitability of the information contained herein for any purpose. All content is provided "as is" without warranty of any kind.

Contents

Preface: Cats and Math 1
Writing to Learn Math 5
1: What Is a Math Journal? 7
2: Making It Work. 16
3: Thinking, Writing, and Thinking About Writing 24
The Journaling Prompts 37
4: Games 38
5: Number Play 51
6: Geometry 64
7: Math Art 75
8: Writing 86
9: Freewrites 96
10: Explanations 102
11: Research Reports 110
12: Measurement and Data 118
13: Problem-Solving 128
14: Experiments 137
15: Create Your Own Math 149
Conclusion 165
16: Continue the Adventure 166
Appendixes 173
21 Favorite Online Resources 174
Quote and Reference Links. 177
Acknowledgments and Credits 186
Index 188
About the Author 197

Preface: Cats and Math

In all the books I write, my goal is to encourage families to explore the world of math in a new way. To enjoy thinking and playing with ideas. To delight in the beauty of numbers, shapes, and patterns. And to fight for true understanding, doing whatever it takes to help math make sense for our children.

With that "fight for understanding" on my mind, back in January 2021 while the Covid-19 pandemic raged on, I launched my first math journaling Kickstarter project, called "Make 100 Math Rebels."

To my surprise, my daughter's cats Cimorene and Puck signed on to lead the Kickstarter promotions. Because cats know the Internet, and they know how to make people do whatever they want.

Or at least, that's what they told me.
Cimorene thought everyone should order one of the big sets of three paperback or hardcover journals. Books come in boxes, after all, and boxes are important to cats.

Puck agreed that boxes are a good thing. But he thought people should get into journaling in any format they liked. Puck values curiosity and creative thinking, and math journaling is all about teaching students to explore ideas and think creatively about math.

The Kickstarter succeeded beyond expectations. More than a hundred parents and teachers signed on to help me create three beautiful
journals for adventurous students, with full-color, parchment-style pages that make writing fun. Along with the journals, I offered supporters a checklist of one hundred math journaling prompts to help draw out their children's mathematical thinking.

Months later, I've tripled that original list into a full book with more than three hundred ideas to spark creative, liberal-arts mathematics. As I'm wrapping up work on this book, the cats are still plotting ways to spread the news about writing to learn math.

Cimorene worries that many children (and their parents) struggle with a fear of math. She thinks that's because school math can seem stiff and rigid. To children, it can feel like "Do what I say, whether it makes sense or not."

That's a horrid feeling. It reminds Cimorene of being trapped in the carrier bag for a trip to the vet. She wants everyone to know that math journaling is not like that. In fact, journaling makes number play fun like catnip.

Nobody wants a trip to the vet. Cimorene hopes you'll take her advice and try a math journaling prompt instead.

But Puck thinks most people are confused by the idea of math journals.

Cats know how important it can be for students to explore math and try new things. Playing with ideas is how kittens (and humans) learn. Many people understand that children need to do hands-on experiments in science. But Puck believes that most adults don't know how to do a math experiment.

The Cat Escape Puzzle

To show how your children can experience the joy of creative reasoning, Puck decided to create a puzzle about saving cats from their mortal enemy.

Imagine the dog ran into the kitchen, so the cats need to get off the floor. There are three chairs around the table. There are two cats, and
they don't like to share a seat. How many different ways can the cats jump onto the chairs?

When Puck was a little barn kitten, his mama taught him that the best way to learn is to figure things out for yourself. So he won't give you the answer to his puzzle.

Your children may draw pictures, write explanations, or use equations. They can work alone or with a friend. When someone finds an answer that makes sense to them, and their friend can't find anything they missed, that's good enough.

And then the fun begins. The real point of a math experiment is to change something in the problem and see how that changes the answer.

What new Cat Escape Puzzle will your children create? What if there are four chairs, or three cats, or only one cat? What if there are more chairs? What if there's only one chair? (A math horror story, from Puck's point of view!) How might the puzzle change if the cats were willing to share a seat?

What questions will you ask?

The Princess Puzzle

Cimorene refuses to let Puck have all the math journaling fun. She wants children to understand that there are many approaches to solving any math problem, so she created a new cat puzzle of her own.

The Princess of Cats has a luxuriously soft tail about 12 inches (30 centimeters) long. Her tail is three times the length of her noble head. Her beautiful, furry body is as long as head and tail together. How long is the Princess from her delicate nose to the tip of her majestic tail?

What can children do with a problem like this? They may want to make a list of the things they know from the story. Perhaps they will draw a picture of the cat and label the proportions. Each will take their
own approach to figure it out.
And then the best part of any math journal prompt is when kids make their own math. Will they write a puzzle about their own pet? Or about their favorite animal? Encourage your children to be math makers, sharing their creations with their friends and family.

As every cat knows, learning is a lifelong adventure that everyone can enjoy.

Listen to Cimorene and Puck, and help your children explore their own ideas about numbers, shapes, and patterns through journaling. I hope your family has as much fun playing with these prompts as the cats and I had writing them.
-Denise Gaskins, with Cimorene and Puck Rural ILLinois, SEPTEMber 2021

Section I

Writing to Learn Math

Mathematics is not about following rules. It's about playing and exploring and fighting and looking for clues and sometimes breaking things.

Einstein called play the highest form of research. And a math teacher who lets their students play with math gives them the gift of ownership.

Playing with math can feel like running through the woods when you were a kid. And even if you were on a path, it felt like it all belonged to you.

Parents, if you want to know how to nurture the mathematical instincts of your children, play is the answer.

What books are to reading, play is to mathematics.

- DAN FINKEL

Mathematics as a liberal art: In this 16th-century engraving by Gregor Reisch, Lady Arithmetica generously shares her wisdom.

Chapter 1: What Is a Math Journal?

Once upon a time, mathematics was considered a liberal art-an important part of any well-rounded education. Artists painted images of the angelic ladies Arithmetica and Geometria sharing their wisdom with human scholars.

Somehow, over the centuries, math lost its connection both to wisdom and to art.

Now, too often, the school math curriculum forces students on a relentless treadmill from kindergarten to calculus. Our test-driven culture rewards a fast memory and leads children to believe that "math" means cramming facts and procedures into their heads so they can perform on demand.

It's no wonder many kids grow up thinking they're no good at math.
And far too many parents feel unable to help their children learn. They worry about their kids falling behind, which raises the stress level to the point of tears. Mom and Dad are frustrated. The child is discouraged. Doing math homework feels like stumbling through an emotional minefield.

How can we help our children step off this treadmill and rediscover the liberal art of mathematics?

The problem is, we're all a product of our own schooling. Just as we are hoping to shape our children and their future through training
them, we were shaped by our own childhoods. And for most of us, our schooling gave us a totally wrong idea of what math is all about.

School and society teach us to view mathematics as a race. You run as fast as you can from one topic to the next. You must get the answer quickly. You need to follow instructions and score high on tests, and then you win. Or if you don't, you're a loser.

But let me give you a new vision of mathematics. I want you to think of math as a nature walk. There's a whole wide, wild world of interesting things-more ideas, more patterns, more concepts than you and your children would ever have time to study. And everywhere you look, there's something cool to discover.

In his book Measurement, math teacher Paul Lockhart compares doing math to a jungle safari:
> "Mathematical reality is an infinite jungle full of enchanting mysteries, but the jungle does not give up its secrets easily. Be prepared to struggle, both intellectually and creatively.
> "The important thing is not to be afraid. So you try some crazy idea, and it doesn't work. That puts you in some pretty good company! Archimedes, Gauss, you and I-we're all groping our way through mathematical reality, trying to understand what is going on, making guesses, trying out ideas, mostly failing.
> "And then every once in a while, you succeed ... And that feeling of unlocking an eternal mystery is what keeps you going back to the jungle to get scratched up all over again."

If you explore this mathematical world with your children, you're not behind. Wherever you are, you're not behind, because there is no behind. There's only "We're going this direction," or "Let's move that way," or "Hey, look what I found over here." If your children are thinking and wondering and making sense of the math they find, they're going to learn. They're going to grow.

The key to helping our children have success with math is to focus on teaching the real thing. Real math is about making sense of ideas.

Real math is about creative reasoning.
School math rewards children who follow directions, even though it's tedious to memorize stuff that you really don't understand. And to always follow someone else's rules, that's boring. But to figure out things for yourself can be exciting.

When you embrace this adventure of learning math through playful exploration, you'll be surprised how much fun thinking hard can be. It doesn't matter whether your students are homeschooled or in a classroom, distance learning or in person. Everyone can enjoy the experience of playing around with math.

In this book, I'll teach you one of the best ways I know to put real math into practice and help children experience math as a nature walk: math journaling.

Recording Their Mathematical Journey

In a math journal, children explore their own concepts about numbers, shapes, and patterns through drawing or writing in response to a question. Journaling teaches them to see with mathematical eyes-not just to remember what we adults tell them, but to create their own math.

All they need is a piece of paper, a pencil, and a good prompt to launch their mathematical journey. The prompts in this book include number play, math art, story problems, mini-essays, geometry investigations, brain-teasers, number patterns, research projects, and much more.

My journaling prompts invite students to take any rabbit trail that interests them and discover whatever they will, without worrying about grades, testing, or state standards. Everyone can enjoy journaling because creativity is fun. And when children get a chance to be creative in an area they normally think of as drudgery, it feels like a refreshing treat.

Through journaling, children come to realize that learning is more than memorizing facts and procedures, and they develop a richer
mathematical mindset. As they explore their own thoughts, they begin to see connections and make sense of math topics. They grow confident in their ability to think through new problems.

When students write about what they're learning, they build deeper layers of understanding. The process of wrestling ideas into words forces them to pin down nebulous thoughts and decide what they really believe. Journaling gets children actively involved in their own learning. They are more likely to remember what they learn when they write it down.

For children who struggle with numbers and abstraction, writing offers a more familiar way to grapple with concepts. It helps them see themselves as mathematical thinkers.

For students who find math easy, writing reminds them that there's more to being good at math than just getting the right answers. And for those who struggle with words and language, writing about math can feel more natural than many language-based writing assignments.

Math journaling can help you as a parent or teacher, too. If you want to know what your students understand about math, their writing gives you a glimpse into how they are thinking. Some teachers use journal writing as an "exit slip," asking students to jot down a sentence or two about each lesson before leaving class.

Five Types of Journaling Prompts

In Section II of this book, I've organized the math journaling prompts into twelve categories, which may seem overwhelming at first glance. Here's a simpler way to classify the prompts by the type of reasoning involved.

1: Game Prompts

Game prompts break through the idea that math is dull and boring. They help students develop a positive attitude toward math while practicing their number skills or strategic thinking.

For example:
Basic Nim (two players): Draw 10-15 circles (called "stones"). On your turn, mark out one or two of the stones, removing them from play. Whoever marks the last stone wins the game.

Game prompts can also serve as fodder for the other types of prompt questions. We might ask students to analyze the mathematics of the game, to determine whether either player has an advantage, or to explain how they make strategic decisions during game play.

2: Content Prompts

Content prompt questions deal with the concepts of math and the topics studied. They can range from a short summary of a recent lesson to an in-depth research report on math history. Or they may pose a number-play puzzle or a word problem for students to investigate.

For example:
Choose any base number and investigate its powers. For example:
If you choose a base of three, the powers are $3^{1}=3,3^{2}=3 \times 3=9$, $3^{3}=3 \times 3 \times 3=27,3^{4}=3 \times 3 \times 3 \times 3=81$, etc. Extend the list as far as you can. What patterns do you see in the powers of your base number? What other questions can you ask?

Content prompts help students see the bigger picture of a topic. Too often we teach by breaking a math topic into small, bite-size chunks. But writing helps students to step back and put all those little pieces in perspective.

3: Artistic Prompts

Artistic prompts encourage children to express their creativity in playing with mathematical designs. The prompt may propose a geometric or numerical constraint for the artwork. Or it may be open-ended, allowing the students to choose their own responses.

For example:
Use dotty graph paper. Connect dots to create an eight-sided shape. Are all the sides of your octagon the same length? How can you tell? What kind of design can you make with octagons?

Artistic prompts inspire children to make mental connections in a way that abstract number problems can never do. Students feel the relationships of angles and lines as they draw a shape. And these prompts may lead to informal geometry proofs, like determining whether the sides really are the same length.

4: Process Prompts

Process prompts explore and explain the way a student solves problems. They ask learners to organize their ideas and reflect on their prob-lem-solving strategies. Process prompts involve metacognition, which means "thinking about your own thinking."

For example:

> Describe a mistake you made in math, or a problem you missed on a quiz or test. What went wrong? How will you avoid this error the next time? Do you understand the problem now, or is there something more you need to learn about it?

Process prompts help students recognize their own understanding. Too often, math class is about learning to follow other people's thoughts, not about thinking for ourselves. But students already have many ideas about math, and the best way of teaching is to draw out and strengthen those ideas.

5: Affective Prompts

Affective prompts ask about the student's feelings and attitude toward mathematics. This includes self-assessment: How is your math comprehension growing? What is easy for you, and what is most difficult?

For example:
Have you heard that your brain keeps growing the more you use it? And that mistakes help you learn even more than when you get things right? How do these scientific discoveries affect your attitude toward math?

Affective prompts support students in relating math to their own personal experience. They make math seem more "real" to students, more relevant to things they care about, more meaningful. Writing helps students take ownership of their math experience.

And One More Type: Quotation Prompts

When you're looking for ways to prompt student writing, short quotations can be a great resource. I love quotations: Everything I might possibly want to say, someone else has already said it better than I ever could.

You can share one of your own favorite quotes or search for a new quip online. You may want to sample the tidbits on my blog's "Math and Education Quotations" resource page. ${ }^{\dagger}$

Short-Response Prompts

Let students choose how they want to react to the quotation. Or offer one of the following questions:

- What did the author mean? Put the thought in your own words.
- Do you agree or disagree? Why?
- Is it a general principle, or only for specific situations?

Describe a time when the quote might apply, or when it might not.

[^0]- Tell a time in your life when you lived up to the quotation-or when you wish you had.
- How does the quote relate to math, science, history, or another subject?

Research Prompts

Short exercises are great writing practice. But occasionally you may want to assign deeper essay topics, such as:

- Look up the author's name online. Who are/were they, and why do people care what they said?
- What have others said about the same topic? Search out a variety of quotes related to this one. How are they similar? How are they different?
- Does thinking about the quotation make you want to change anything, in yourself or in the world? How could you put that idea into action?

This Is Not a Lesson

Math journaling is different from the normal process of learning math. A typical school math book asks questions where the teacher always knows the answer. This turns math into a performance subject in which our children are constantly being judged. Some students enjoy the chance to show off their knowledge, while others feel like failures.

But journaling prompts ask questions for which we adults do not know the answer because the topic gets filtered through each child's own mind. Students come to a task at their own level and explore their own ideas. Everyone may learn something different, but they all grow as mathematicians.

The journal prompt is not a lesson to be learned. Even with the research prompts that require a student to seek out new information, there is no specific thing we want them to see. It's more like a directed
nature exploration: "What can we find hiding under this log?" We're building awareness, helping them see that there's more to mathematics than they realized.

The journal prompt is not a quiz to be graded or an essay to be judged. Even when a prompt has one specific right answer (which is rare), its primary purpose is to draw out each student's own creative reasoning. How they approach the problem is much more important than whether they figure out an answer.

Our role as parents and teachers is to listen to the children. We want to hear their ideas and understand what's going on inside their minds. When we ask about their own thoughts, our children are the experts. And that's an enormously powerful feeling.

Index

2-D Nim, 41

A

acrostic, 94
Adams, John, 166
addition
game, 39, 41, 42, 44, 46, 54
math facts, 57
pattern, 53, 60, 61, 141
puzzle, 54, 62
age puzzles, 150
algebra
averages, 123
code game, 40
equations, 150,157
geometric relationships, 64
number patterns, 51
puzzle, 139, 162
skip-counting, 48
snakes, 58
vectors, 161
Alhazen, lunes of, 74
aliens, 103, 130
Al-Nayrizi, 148
alphametrics, 60
angles
in a circle, 28
in a hexagon, 68
on a clock, 122,159
animal algebra, 162
answer-getting, 128
answers
as performance, 14
how to check, 22, 107
answers (continued)
making sense, 3
math-rebel style, 32,157
more than one path, 22
no answer key, 22, 27
shortcut, 168
side-effect of reasoning, 27
speed, 8
the answer is, 151
apples, 119, 132, 135
Archimedes, 8, 64
area
fractions, 139, 147, 151
in a circle, 73
maximum, 69
multiplication as, 41
puzzle, $65,67,70,72,158$
squares and roots, 65,66
Arithmetica, 6, 7, 182
arrays, 33,129
art, 7
how to use, 11, 75
Math Art Challenge, 164, 175
asking new questions, 37
Austen, Jane, 167
automathography, 90,119
average, $120,122,123,124,125,127$
Avoid Three, 49

B

Banneker, Benjamin, 111
beauty, 75, 109, 128
benchmark measurements, 125
Berlinghoff, William, 110, 177
billiards, 143
binary numbers, 113
biography
automathography, 90,119
research, $111,112,113,115,116,117$
Blockout, 41
Bogart, Julie, 24, 177
Bowling, 39
brainstorming, 20, 25, 54, 96
brainteaser, 104, 134
Brave Writer, 25, 177
Bridges Mathematical Art Galleries, 144
broken calculator, 55, 56
Buck, R.C., 149, 177
Burns, Marilyn, 30, 177
Butler, David, 147, 177

C

calculator, 55, 56, 107
calendar, 154,155
candy, $43,104,123,130$
cardioid, 84
cards, $38,51,54$
career math, 111, 115, 166
cats, 1, 129, 153
escape puzzle, 2
princess puzzle, 3
Celtic knot designs, 117
Cezanne, 149
chessboard, 85,88
Chomp, 43
chords, 35
cicadas, 132
circles
analyzing a prompt, 27
diameter, 73
lunes, 73,74
tangent, 71
using a compass, 76
vocabulary, 34
classic puzzles
age conundrums, 150
billiards, 143
buckets of water, 136
clock puzzle, 122
classic puzzles (continued)
Collatz conjecture, 140, 152
crossing lines, 138
cutting a plane, 155
donkey math, 160
doubling, 88, 139
Earth's belt, 114
Egyptian cats, 129
four $4 \mathrm{~s}, 63$
half plus one more, 132
half that size, 130
heads and feet, 157
magic math, 158
number partitions, 141
one left out, 129
palindrome numbers, 146
polygon dissections, 142
Pythagorean dissection, 148
rate conundrum, 134
squaring the circle, 73
stacks of paper, 140
surprise, 107
tangrams, 142
cliché, 60
clock fractions, 159
clock puzzle, 122
codes, 40
coin puzzles, 102, 131
Collatz conjecture, 140, 152, 185
comic strip, 79
Connect 4, 42
connecting dots
game, 40, 43
math art, 78
maxagons, 144
maze, 82
octagons, 78
puzzle, 71
quadrilaterals, 69, 72
squares, 138
tessellations, 83
with a ruler, 84,154
Cook, Katherine, 165, 178
cookbook, 16
cookie bake-off, 132
corrections, 29
counting squares, 138,145
create a font, 76
creativity, 20, 149, 171
Criss-Cross, 40
criticism, 28, 165
crossing lines, 138
cross-math puzzles, 156
cryptarithmetic, 60
Cuisenaire rods, 79
curiosity, 121
and learning, 20, 37, 98, 171
posing questions, $3,93,137,164,169$
curiosity, 172
cutting pizza, 155

D

Danielson, Christopher, 37, 178
data, 118
averaging, 124, 127
graphing, $121,122,123,124,126,127$
in the news, 116
life expectancy, 113
supporting, 117
diagonals, 141, 142
dialogue journal, 30
diameter, $27,34,73,74,93$
dice, $38,39,41,44,46,54,125$
dominoes, 135
donkey math puzzle, 160
doodling, 75, 79, 84
Double Digit, 44
doubling, 54, 88, 130, 139
drafting, 76, 84

E

Earth's belt, 114
editing, 28
Egyptian math, 112, 129
Einstein, Albert, 5
equator, 114
estimation, 115, 126
Euclid, 137
Euler, Leonhard, 142
experiments, 2, 38, 137
Expii Solve, 104, 174
exponents, 55, 59, 140

F

factorials, 124
fake math, 168
farmer's market, 132, 135
fear of math, 2,7
feelings, $7,12,15,98$
Fermat's Last Theorem, 22
Fib poem, 92
Fibonacci, 60, 92
Find the Factors, 57, 182
Finkel, Dan, 5, 56, 145, 178
following rules, $9,19,33,51$
font, create a, 76
four $4 \mathrm{~s}, 63$
Fraction Talks, 132, 174
fractions
common denominator, 168
of a square, $121,139,151$
on a clock, 159
puzzles, 132, 147, 153
simplify, 100
wall, 119
Franco, Betsy, 90, 178
Frayer model, 89
freewriting, 96

G

games
analyzing strategy, 38,105
changing the rules, $38,158,160,162$
freewrite, 97
how to use, 10, 38
Math You Can Play, 17
misère, 38
games, by name
2-D Nim, 41
Avoid Three, 49
Blockout, 41
Bowling, 39
Chomp, 43
Connect 4, 42
Criss-Cross, 40
Double Digit, 44
Gomoku, 45
games, by name (continued)
Greedy Pig, 46
Make a Square, 46
Nim, 39, 45
One Hundred Up, 42
Pig, 41
Place Value Nim, 46
Row Call, 49
Secret Number Codes, 40
Sequencium, 49
Sim, 43
Skip-Counting Game, 48
Substitution Game, 42
Tsyanshidzi, 45
Wythoff's Nim, 47
Year Game, 56
Gardner, Martin, 112, 178
Gauss, Karl Friedrich, 8, 110, 179
Geometria, 7
geometry
analyzing a prompt, 27
how to use, 64
vocabulary, 33
Gillian, S.Y., 104
Golden, John, 38, 121, 179
Gomoku, 45
goose and grapes, 133
Gouvêa, Fernando, 110, 180
government, 113, 127
grammar, 30
graph paper, 18
graphing, 118
data, $121,122,123,124,126,127$
in the news, 116
grasshopper numbers, 146
Greedy Pig, 46
grids, 33
growth mindset, 19, 88

H

haiku, 89
hailstone numbers, 140, 152
Hamilton, Gordon, 128, 180
hexagons, $34,68,142$
hierarchy of editing, 28
hieroglyphic numerals, 112
Hippocrates, 73, 185
Hippocrates, lunes of, 73
history, 110, 114, 115, 116
hobbits, 32, 136
homework
answer-getting, 128
math-rebel-style, 32
prompt, 152, 157
struggles, 7,167
hundred face, 79

I-J-K

imagination, 20, 94, 96, 172
Incompetech, 18
insect puzzle, 132
interior decorating, 122
Joris, Walter, 49, 180
Kickstarter, 1, 31
Krieg, Paula Beardell, 105, 180

L

Lady Arithmetica, 6, 7
Lady Geometria, 7
Laib, Jenna, 48, 180
learning tools, 19, 167
liberal arts, $6,7,16,170$
life expectancy, 113
lifelong learning, 4, 30, 37, 164, 171
limerick, 151
listening to children, 15, 21
living math, 17
Lockhart, Paul, 8, 102, 180
Lovelace, Ada, 112
low poly art, 81
lunes, 73, 74
M
MacTutor Biographies, 111, 112, 113, $115,116,117$
magic math puzzle, 158
Mai, James, 143, 181
Make a Square, 46
makers, 4, 20, 93, 149, 168
mandala, 85
maps, 100

Math Art Challenge, 164, 175, 182
math concepts
addition, $39,41,42,44,46,53,54,60$, 62, 141
algebra, $40,51,58,64,123,150,162$
angles, 28, 68, 159
area, $41,65,67,69,70,72,73,151$
average, $120,122,123,124,125,127$
circles, $27,34,71,73,74,76$
data, $113,116,118,121,122,123$, 124, 126, 127
diagonals, 141, 142
diameter, $27,34,73,74,93$
estimation, 115, 126
exponents, 55, 59, 140
fractions, 119, 121, 139, 147, 151, 159
graphing, 116, 118, 121, 122, 123, 124, 126, 127
math facts, 57
mixed operations, $40,42,51,54,55$, $56,58,61,63,154,160$
multiplication, 41, 52, 54, 55
number line, 55, 146
odd numbers, 61
percents, 133
perimeter, $67,69,72$
permutations, 124,155
place value, $44,46,54,59$
polygons, 34, 68, 69, 70, 141, 142, 144
probability, 73,125
quadrilaterals, $65,67,69,72$
ratios, 134, 153
rotational symmetry, $82,83,85$
skip counting, 48, 52, 158
slope, 49, 154
square numbers, $61,65,66$
squares, 46, 65, 66, 148
subtraction, 57
symmetry, $80,83,85,139$
tangent, 35,71
triangles, $28,69,71$
triangular numbers, 53
vectors, 161
vocabulary, 33
math facts, 57
math history, $110,114,115,116$
Math Is Fun, 112, 175
math makers, $4,20,93,149,168$
Math Munch, 112, 175
math phobia, 2,7
math quilt, 151
math rebellion, $1,32,170$
math riddles, 159
Math Teachers' Circle, 40
Math Through the Ages, 110, 177, 180
math translation, 103
mathematical reality, 8
mathematical thinking, 166
Archimedes and, 64
in the jungle, 8
noticing, 20
prompts, 12,95
real math, 22,27
struggles and, 165, 168
Mathematician Project, 111, 112, 113, 115, 116, 117, 182
Mathematickles, 90, 178
Mathigon, 112, 142, 175
timeline, 111, 112, 113, 115, 116, 117
maxagons, 144
Mayan numerals, 111
mazes, 82
mean (average), $120,122,123,124,125$, 127
measurement, 118
benchmarks, 125
floor plan, 122
units, $124,125,134,157$
Measurement, 8, 180
meme, 162
memory, 172
building on, 21
doodling and, 75
prompt, 97, 106
school math, 7, 9
tricks, 108
mental math, 108, 160
metacognition, 12, 26, 94, 95
mindset, $10,16,19,88$
mini-zine, 105
misère game, 38
mistakes
and growth mindset, 88
good company, 8
language, 30
prompt, 97, 99, 103
mixed operations
brainstorming, 54, 154, 160
game, 40, 42, 51, 56
puzzle, 55, 56, 58, 61, 63
mnemonics, 93,108
money
Is it math?, 100
mental math, 108
puzzle, 102, 131, 153
spending, 112, 127, 129
What is it?, 103
Moscovich, Ivan, 146, 181
multiplication, 41, 54, 55
binary, 113
math facts, 57
skip counting, 48, 52, 158
multiplication wheel, 52
Museum of Mathematics, 88
mystery numbers, 150
mystery of numbers, 51

N

National Museum of Mathematics, 88
nature walk, $8,21,167$
Nim variations, $39,41,42,45,46,47,160$
notice and wonder, 20
Nrich Maths, 83, 112, 175, 181
number boxes, 54, 59
number facts, 57
number line, 55, 146
number partitions, 141
number pyramids, 62
number riddles, 159
number snakes, 58
number yoga, 61
Numberless Math Problems, 104, 185
numberstorming, 54

0

obstacle course, 122
octagons, 34,78
odd numbers, 61
old MacDonald's farm, 157
Ollerenshaw, Kathleen, 64, 181
One Hundred Up, 42
One Right Answer, 22, 27, 171
online resources, 174
open number line, 55
Orlin, Ben, 24, 49, 181
P
painting blocks, 70, 71, 73
palindromes, 146
Parker, Ruth, 16, 182
partitions, 141, 143
patience, 17, 21, 138
payday puzzle, 108
pentagons, 34,71
pentagram, 71
percents puzzle, 133
perimeter, $67,69,72$
Perkins, Annie, 164, 182
permutations, 124, 155
phobia, 2, 7
pi, 34
pi poem, 93
Pig, 41
pixel graphics, 77
place value, 44, 46, 54, 59
Place Value Nim, 46
planning, 16, 31
play, 51, 75
importance of, 5, 9, 35
playing cards, $38,51,54$
poetry
acrostic, 94
haiku, 89
limerick, 151
pietry, 93
square, 87
the Fib, 92
tips, 86
word equations, 90
Polo, Marco, 166
Pólya, George, 137, 182
polygons
area, 70
diagonals, 141, 142
in a hexagon, 68
math art, 81
maxagons, 144
perimeter, 69
vocabulary, 34
Post, Sonya, 42, 182
Presidents' life expectancy, 113
Pride and Prejudice, 167
probability, 73, 125
problems without numbers, 104
problem-solving
looking back, 22
prompt, 95, 104
seeing and, 20
struggles and, 109, 165, 168
tips, 128
prompts, types of, 10, 31, 169
proofreading, 30
proofs, 12, 56, 102
Public Math, 105
punctuation, 30
Pythagorean theorem, 148

Q

quadrature, 73
quadrilaterals
area, 65, 67
connecting dots, 69, 72
puzzle, 161
vocabulary, 34
quarter the cross, 147
questions
and proofs, 102
as a sign of learning, 37
brainstorming, 20, 25, 96
evergreen, 169
geometry, 64
journalist's, 20, 96
posing, 3, 93, 137, 164, 169
problem-solving, 128
school math, 14
the answer is, 151
questions (continued)
types of prompt, 11, 13, 169
value of struggle, 22
quilt fractions, 151
quotation prompts, 13

R

ratios, 134, 153
reason-poems, 102
rebels, $1,32,170$
recipes, prompts as, 16
rectangles, 65, 67
Reinhart, Steve, 7, 182
Reisch, Gregor, 6, 182
reluctant writers, 18,25
research
play as, 5
questions, 14, 137, 164
tips, 110
resources, 174
riddles, 159
right answers
and justice, 171
answer-getting, 128
as performance, 14
how to check, 22,107
literal, 60
shortcut, 168
side-effect of reasoning, 27
rock-paper-scissors, 134
Roman mosaic, 83
Roman numerals, 111
rotational symmetry, $82,83,85$
Row Call, 49
rules of math, $9,19,33,51$
S
Sallay, Iva, 57, 182
Same But Different, 131, 175
Sanders, Savannah, 51, 183
school math
discouragement, 2, 7, 170
follow directions, $9,19,51$
performance, 14
prompt, 100
speed, 7
science fiction, 103, 130
Scientific American, 112, 178
Secret Number Codes, 40
see, wonder, create, $19,167,169$
seeing
and problem-solving, 20, 166
how to teach, 16,20
in geometry, 64
prompt, 87, 92, 126
self-assessment, 12, 22
senryū, 89
Sequencium, 49
Shah, Manan, 60, 183
sidewalk math, 80
Sierpinski triangle, 70
silly equations, 157
Sim, 43
six-word stories, 87
skip counting, 48, 52, 158
Skip-Counting Game, 48
slope, 49, 154
Slow-Reveal Graphs, 116, 118, 176
Smith, David Eugene, 96, 183
snakes, 58
social media meme, 162
Solve Me, 129, 160, 176
spelling, 30
spirolaterals, 147
squarable numbers, 145
square numbers, $61,65,66$
square poem, 87
squares, $46,65,66,148$
squaring the circle, 73
Srinivasan, Bhama, 75, 183
stacks of paper, 140
stages of growth, 24
Steward, Don, 58, 72, 113, 139, 144, 174, 183
story problem challenge, 149
storytelling
be an author, 162
bus, 152
business tycoon, 159
favorite characters, 153
gadgets, 155
storytelling (continued)
movie props, 161
Old MacDonald, 157
pets, 156
restaurant, 150
struggles
good company, 8
homework, 7,167
value of, $22,24,109,165,168$
with math, 10,19
with writing, 17, 25
Student Math Makers Gallery, 149, 169
Su, Francis, 166, 184
Substitution Game, 42
subtraction, 57
superheroes, 129
supplies, 18
surprise puzzle, 107
swap equation, 139
symmetry, $80,83,85,139$
symmetry puzzles, 80

T
tablecloths, 83
tangent, 35, 71
tangrams, 142
Tanton, James, 1, 184
task card books, 31
taxicab geometry, 138
tessellations, 78, 83, 148
testing, $7,103,106$
thesis statement, 110
Thompson, Christy Hermann, 118, 184
threeven numbers, 163
tic-tac-toe variations, $42,45,46,49,162$
times table, 57, 113
tools of learning, 19, 167
translating math, 103
triangle sums, 61
triangles
area, 158
equilateral, 71
Euler puzzle, 142
in a circle, 28
prompt, 69, 80, 161
triangles (continued)
right, 28, 72
Sierpinski, 70
triangular numbers, 53
Tsyanshidzi, 45
twisted cliché, 60
two truths and a lie, 151
types of prompts, 10, 31, 169
U-V
uncurriculum, 17
units of measurement, $124,125,134,157$
Vandervelde, Sam, 40, 184
vector algebra, 161
Visual Patterns, 133, 156, 176
vocabulary
Frayer model, 89
geometry, 33
grid vs. array, 33
number properties, 54
silly definitions, 87
the answer is, 151
threeven, 163
word wall, 94

W

weather, 124
Wedekind, Kassia Omohundro, 118, 184
What number am I?, 159
What's Going On in This Graph?, 116, 118, 176

Which One Doesn't Belong?, 133, 163, 176
White, Geoff, 172, 185
Wiles, Andrew, 23
Williams, Farrar, 104, 185
wondering, 20, 98, 99
and questions, $37,93,137,164,169$
word equations, 90
Would You Rather?, 106, 108, 135, 153, 176
Writer's Jungle, The, 24, 177
writing tips, 25, 86, 96
Wythoff's Nim, 47
X-Y-Z
year game, 56
yoga, 61
Zinsser, William, 86, 185

Learning Math through Play

Are you looking for new ways to help your children learn math?
In a math journal, children explore their own ideas about numbers, shapes, and patterns through drawing or writing in response to a question.

Journaling encourages students to develop a rich mathematical mindset. They begin to see connections and make sense of math concepts. They grow confident in their ability to think through new ideas.

All they need is a piece of paper, a pencil, and a good prompt to launch their mathematical journey.

312 Things To Do with a Math Journal includes number play prompts, games, math art, story problems, mini-essays, geometry investigations, brainteasers, number patterns, research projects, and much more.

Theseactivities workat any gradelevel, and most can beenjoyed more than once. It doesn't matter whether your students are homeschooled or in a classroom, distance-learning, or in person. Everyone can enjoy the experience of playing around with math.

Pick up a copy of 312 Things To Do with a Math Journal and begin your family's math journaling adventure today.
"Denise Gaskins's work is consistently lovely and playful, so check it out if you do any journaling or any other sort of mathematical writing with children."
-Christopher Danielson, author of Which One Doesn't Belong?

[^0]: † denisegaskins.com/quotations

