Barrier-Free ${ }^{\circledR}$ Podiatry Procedures Chair

Model Numbers:
647

Service and
Parts Manual

FOR USE BY MIDMARK TRAINED TECHNICIANS ONLY

GENERAL INFORMATION

Symbols. . iii
Ordering Parts iii
Serial Number Location iii
Specificationsiv
Model Identification /
Compliance Chart. \qquad ..V
Scheduled Maintenance /
Cleaning Chart. ..$v i$

TROUBLESHOOTING

Troubleshooting ChartA-2
Power to the Chair:
Standard Base. A-10
Rotational BaseA-12
Base Up / Down. A-14
Back Up / Down......................A-16
Tilt Up / DownA-18
Crash Avoidance SystemA-20
Position ProgrammingA-22
QuickExam FunctionA-24
QuickChair Function...............A-26
Chair Receptacles A-28
Rotational Base
Brake SystemA-29
Foot Extension........................A-30
TESTING \& ADJUSTMENTS
Primary FusesB-2
Foot Control / Touch Pads........B-3
Actuators / Limit Switches:
Base ...-7
Tilt..B-16
Gas Springs............................B-20
Chair ReceptaclesB-21
Main System TransformerB-22
Position Sensors.....................B-24
Main PC BoardB-30
Foot Extension / Limit Switch .B-33
Rot. Base Brake SystemB-35

ACCESS PROCEDURES

PC Board Cover:
Standard Base........................C-2
Rotational BaseC-3
Base Shrouds:
Raising (w/ bungee cord)........C-4
Lower / Remove / Install.........C-5
UpholsteryC-6
Foot Extension Covers..............C-7

WIRING DIAGRAMS

647:

(-001/-002) Standard Base...D-2 (-003/-004) Rotation. Base ...D-3

EXPLODED VIEWS

647:
(-001 / -002) Standard Base...E-2
(-003/-004) Rotation. Base ...E-3

REPAIR PROCEDURES \& FORMS

Actuators / Limit Switches:

Base003-1739-00
Back...................003-1738-00
Tilt.......................003-1915-00
Position Sensors.......003-1473-00
Main PC Board003-1490-00
Upper Glides...........003-1509-00
Rotational Base Kit....003-1657-00
Gas Springs............003-1741-00
Parts Order Form.......004-0755-00
Comments Form004-0756-00
Color Selector.... www.midmark.com

(*) Indicates multiple pages due to model / serial number break(s).

Symbols

DANGER

Indicates an imminently hazardous situation which will result in serious or fatal injury if not avoided. This symbol is used only the most extreme conditions.

WARNING
 Indicates a potentially hazardous situation which could result in serious injury if not avoided.

Caution

Indicates a potentially hazardous situation which may result in minor or moderate injury if not avoided. It may also be used to alert against unsafe practices

Equipment Alert

Indicates a potentially hazardous situation which could result in equipment damage if not avoided.

The symbols below may be used in this manual to represent the operational status of table functions and components.

Indicates the function / component is working properly. No action required.

Indicates the function / component is working, but a problem exists.

Indicates the function is not working at all, or that the component is faulty.

Ordering Parts

The following information is required when ordering parts:

- Serial number \& model number
- Part number for desired part (Refer to Section E: Exploded Views \& Parts Lists)

Non-warranty parts orders may be faxed to Midmark using the Fax Order Form in the back of this manual.

For warranty parts orders, call Midmark's Technical Service Department with the required information.
Hours: 8:00 am to 5:00 p.m. EST (Monday thru Friday)
Phone: 1-800-Midmark

Serial Number Location

Specifications

Patient Weight (max):	450 lbs (204 kg)
Weight of Chair:	Standard Base: $421 \mathrm{lbs}(191 \mathrm{~kg})$ Rotational Base: $506 \mathrm{lbs}(230 \mathrm{~kg})$
Power Cord Length:	$8 \mathrm{ft}(244 \mathrm{~cm})$
Fuses (located at power cord inlet):	$\mathbf{6 . 3 A , 2 5 0 \mathrm { V } , \text { Type "T", } 5 \times 2 0 \mathrm { mm }}$
Foot Control Voltage:	10 VAC, SELV (Safety Extra Low Voltage)
Chair Receptacle Maximum Load:	$115 \mathrm{VAC}, 3$ amps, 50 / 60 Hz
Duty Cycle (Motor Run Time):	Intermittent Operation $(30$ seconds ON -5 mintes OFF)
Protection against ingress of fluids:	Ordinary Equipment Foot control only: IPX1
Classifications:	Class 1, Type B, Applied Part
Electrical Requirements:	See model identification chart below
Regulatory Compliance:	See model identification chart below
Equipment not suitable for use in the presence of aflammable anesthetic mixture with air, oxygen, or nitrous oxide.	

Back Function
 Full Down: $0^{\circ} \pm 1 / 2$

Full Up: $80^{\circ} \pm 3^{\circ}$

Base Function

Standard Base
Full Down: 19 in. (48 cm) Full Up: 40 in. (101 cm)
Equipment not suitable for use in the presence of a flammable anesthetic mixture with air, oxygen, or nitrous oxide.

MA7873i

Model Identification / Compliance Chart

Model	Description	Complies To:			Electrical Ratings:		
		$\begin{array}{\|c\|} \hline \text { UL } \\ 60601-1 \end{array}$	$\begin{gathered} \text { CAN / CSA } \\ 22.2, \\ \# 601.1-\mathrm{M} 90 \end{gathered}$	$\begin{gathered} \text { EN } \\ 60601-1-2 \\ \text { (EMC) } \end{gathered}$	$\begin{gathered} \text { VAC } \\ +/-10 \% \end{gathered}$	Amps	Cycles (Hz)
647-001	Three-Function Chair (Base, Back \& Tilt) Non-Programmable w/Receptacles	-	-	-	115	10.5	60
647-002	Three-FunctionChair (Base, Back \& Tilt) Programmable w/Receptacles	\bullet	\bullet	\bullet	115	10.5	60
647-003	Three-FunctionChair (Base, Back \& Tilt) Non-Programmable w/Rotational Base	-	\bullet	-	115	8.5	60
647-004	Three-FunctionChair (Base, Back \& Tilt) Programmable w/Rotational Base	-	-	\bullet	115	8.5	60

Scheduled Maintenance / Cleaning Chart

Troubleshooting

Troubleshooting Chart A-2
Power to the Chair:
Standard Base A-10
Rotational Base A-12
Base Up / Down A-14
Back Up / Down A-16
Tilt Up / Down A-18
Crash Avoidance System A-20
Position Programming A-22
QuickExam Function A-24

QuickChair Function A-26
Chair Receptacles. A-28
Rotational Base Brake System A-29
Foot Extension A-30

Troubleshooting Chart

Problem	Symptom	Probable Cause	Check	Correction
No functions will operate.	Power light is OFF.	Facility supply voltage.	Power cord connections \& facility circuit breaker.	Secure power cord connections. Reset circuit breaker if necessary.
		Primary fuse(s) blown.	Inspect fuses.	Replace faulty fuse(s).
		Main system transformer	Wire connections between: power inlet and main PC board.	Secure loose connections. If connections are OK, test the transformer. Refer to: Section B Main System Transformer
			Models w/Rotational Base: Wire connections between: rotational base PC board and transformer.	Secure loose connections. If connections are OK, perform EMI Filter Board Test. Refer to: Section B - Rotational Base Brake System.
		Main PC board	If main system transformer is OK...	Replace main PC board.
	Power light is ON.	Foot control / touch pad	Try activating functions from each touch pad / foot control.	Refer to: Section B Foot Control / Touch Pads
		System malfunction	Error code LEDs on main PC board.	Refer to: Section B - Main PC Board.
Base function not operating properly.	No Base Up or Base Down	Foot control / touch pad	Try activating functions from each touch pad / foot control.	Refer to: Section B Foot Control / Touch Pads
		System malfunction	Error code LEDs on main PC board.	Refer to: Section B - Main PC Board.
		Loose / damaged wire connections	Check wire connections to: base actuator, base limit switches.Check black \& white wire connections between main system transformer \& main PC board.	Secure any loose connections.
		Base actuator / main PC board	Refer to: Section B - Base Actuator / Limit Switches (Isolating a Malfunction)	Follow test sequence outlined in Section B.

Models:	647 Serial Numbers:	

Problem	Symptom	Probable Cause	Check	Correction
Base function not operating properly. - continued	No Base Up. Base Down-OK. -OR- No Base Down. Base Up-OK.	Foot control / touch pad	Try activating functions from each touch pad / foot control.	Refer to: Section B Foot Control / Touch Pads
		System malfunction	Error code LEDs on main PC board.	Refer to: Section B - Main PC Board.
		(No Base Down) Crash Avoidance System	Refer to: Section A Crash Avoidance System	Determine appropriate test procedure(s) based on the theory of operation for the Crash Avoidance System.
		(No Base UP): Base Up limit switch (No Base Down): Base Down limit switch	Wire connections to limit switch.	If connections are OK, perform Limit Switch Test. Refer to: Section B Base Actuator / Limit Switch
		(No Base Down) Foot extension switch	Remove any obstructions under foot section of table.	Perform "Crash" Limit Switch Test. Refer to: Section B - Foot Extension / "Crash" Limit Switch.
		Base actuator / main PC board	Refer to: Section B - Base Actuator / Limit Switches (Isolating a Malfunction)	Follow test sequence outlined in Section B.
	Base drifts down.	Base actuator \& gas springs	With no weight on table, does base still drift down?	If YES, replace motor coupler \& gas springs. If NO , replace base actuator. Refer to: Section B - Base Actuator / Limit Switches
	Noisy operation (grinding, squeaking, etc.)	Gas springs / scissor mechanism	-	Clean / lubricate gas spring pivot joints. Wipe guide bars with a clean, dry cloth. NEVER lubricate guide bars or scissor mechanism! Refer to: Section B-Gas Springs
		Base actuator	Refer to: Section B - Base Actuator / Limit Switches (Isolating a Malfunction)	Follow instructions outlined in Section B.

Problem	Symptom	Probable Cause	Check	Correction
Base function not operating properly. - continued	Base function moves slowly, and/or will not lift patient.	Patient exceeded 450 lb weight limit	-	Inform staff that max patient weight is 450 lbs .
		Low voltage to table	Check supply voltage. Required: 115 VAC $\pm 10 \%$	Connect adequate supply voltage.
		Base actuator motor	Perform Actuator Motor Test. Refer to: Section B - Base Actuator / Limit Switches	Follow test sequence outlined in Section B.
		Gas springs	If actuator motor is OK...	Replace gas springs. Refer to: Section B - Gas Springs
	Base function moves briefly, then stops ("beeps").	Main PC board needs to be calibrated	Calibrate main PC board	Refer to: Section B - Main PC Board.
		System malfunction	Error code LEDs on main PC board.	Refer to: Section B - Main PC Board.
		Base position sensor	Wire connections to sensor. Perform Output Voltage Test (at Sensor). Refer to: Section B Position Sensors	Follow test sequence outlined in Section B.
		Base actuator / main PC board	Perform Actuator Motor Test. Refer to: Section B - Base Actuator / Limit Switches	Follow test sequence outlined in Section B.
Back function not operating properly.	No Back Up or Back Down	Foot control / touch pad	Try activating functions from each touch pad / foot control.	Refer to: Section B Foot Control / Touch Pads
		Loose / damaged wire connections	Check wire connections to: back actuator \& back limit switches.Check wire connections between main system transformer \& main PC board (black \& white wires).	Secure any loose connections.
		Back actuator / main PC board	Refer to: Section B Back Actuator / Limit Switches (Isolating a Malfunction)	Follow test sequence outlined in Section B.

Problem	Symptom	Probable Cause	Check	Correctio
Back function not operating properly. - continued	No Back Up. Back Down-OK. -OR- No Back Down. Back Up-OK.	Foot control / touch pad	Try activating functions from each touch pad / foot control.	Refer to: Section B Foot Control / Touch Pads
		(No Back Down) Crash Avoidance System	Refer to: Section A Crash Avoidance System	Determine appropriate test procedure(s) based on the theory of operation for the Crash Avoidance System.
		(No Back UP) Back Up limit switch (No Back Down) Back Down limit switch	Wire connections to limit switch.	Replace back limit switch / bracket assembly. Refer to: Section B - Back Actuator / Limit Switches
		Back actuator / main PC board	Refer to: Section B - Back Actuator/Limit Switches (Isolating a Malfunction)	Follow test sequence outlined in Section B.
	Back drifts down.	Back actuator / motor coupler		Replace motor coupler. Refer to: Section B - Back Actuator/Limit Switches
	Noisy operation (grinding, squeaking, etc.)	Back actuator	Refer to: Section B - Back Actuator/Limit Switches (Isolating a Malfunction)	Follow instructions outlined in Section B.
	Back function moves slowly, and/or will not lift patient.	Patient exceeded 450 lb weight limit	-	Inform staff that max patient weight is 450 lbs .
		Low voltage to table	Check supply voltage. Required: 115 VAC $\pm 10 \%$	Connect adequate supply voltage.
		Back actuator motor	Perform Actuator Motor Test. Refer to: Section B - Back Actuator/Limit Switches	Follow test sequence outlined in Section B.

Models:	647 Serial Numbers:	

Problem	Symptom	Probable Cause	Check	Correction
Back function not operating properly. - continued	Back function moves briefly, then stops ("beeps").	Main PC board needs to be calibrated	Calibrate main PC board	Refer to: Section B - Main PC Board
		Back position sensor	Wire connections to sensor. Perform Output Voltage Test (at Sensor). Refer to: Section B Position Sensors	Follow test sequence outlined in Section B.
		Back actuator / main PC board	Perform Actuator Motor Test. Refer to: Section B Back Actuator / Limit Switches	Follow test sequence outlined in Section B.
Tilt function not operating properly.	No Tilt Up or Tilt Down	Foot control / touch pad	Try activating functions from each touch pad / foot control.	Refer to: Section B Foot Control / Touch Pads
		Loose / damaged wire connections	Check wire connections to: tilt actuator, tilt down limit switch.	Secure any loose connections.
		Tilt actuator / main PC board	Refer to: Section B Tilt Actuator / Limit Switch (Isolating a Malfunction)	Follow test sequence outlined in Section B.
	No Tilt Up. Tilt Down-OK. -OR- No Tilt Down. Tilt Up-OK.	Foot control / touch pad	Try activating functions from each touch pad / foot control.	Refer to: Section B - Foot Control / Touch Pads
		(No Tilt Up) Tilt position sensor	Refer to: Section A Tilt Up/Down Function (Tilt Up Operation) for description of proper operation.	Perform Output Voltage Test (at Sensor). Refer to: Section B Position Sensors
		(No Tilt Down) Tilt Down limit switch	Wire connections to limit switch.	If connections are OK, perform Limit Switch Test. Refer to: Section B Tilt Actuator / Limit Switch
		Tilt actuator / main PC board	Refer to: Section B - Tilt Actuator / Limit Switch (Isolating a Malfunction)	Follow test sequence outlined in Section B.

Models:	647 all	

Problem	Symptom	Probable Cause	Check	Correction
Tilt function not operating properly. - continued	Seat drifts down.	Tilt actuator / motor coupler		Replace motor coupler. Refer to: Section B - Tilt Actuator / Limit Switch
	Noisy operation (grinding, squeaking, etc.)	Tilt actuator	Refer to: Section B - Tilt Actuator / Limit Switch (Isolating a Malfunction)	Follow instructions outlined in Section B.
	Tilt function moves slowly, and/or will not lift patient.	Patient exceeded 450 lb weight limit	-	Inform staff that max patient weight is 450 lbs .
		Low voltage to table	Check supply voltage. Required: 115 VAC $\pm 10 \%$	Connect adequate supply voltage.
		Tilt actuator motor	Perform Actuator Motor Test. Refer to: Section B - Tilt Actuator / Limit Switch	Follow test sequence outlined in Section B.
	Tilt function moves briefly, then stops ("beeps").	Main PC board needs to be calibrated	Calibrate main PC board	Refer to: Section B - Main PC Board
		Tilt position sensor	Wire connections to sensor. Perform Output Voltage Test (at Sensor). Refer to: Section B - Position Sensors	Follow test sequence outlined in Section B.
		Tilt actuator / main PC board	Perform Actuator Motor Test. Refer to: Section B - Tilt Actuator / Limit Switch	Follow test sequence outlined in Section B.
Multiple functions are inoperable. Table "beeps".	Inoperable functions may include any of the following: Base Down, Back Down, Tilt Up, Tilt Down	Crash Avoidance System	Refer to: Section A Crash Avoidance System	Determine appropriate test procedure(s) based on the theory of operation for the Crash Avoidance System.
Programming feature does not work properly.	Positions cannot be programmed. - or - When position button is pressed, table does not move, or moves to wrong position.	Programming failed.	-	Reprogram desired position. Refer to: Section A - Position Programming
		Programming process error.	Error code LEDs on main PC board.	Refer to: Section B - Main PC Board
		Main PC board needs to be calibrated	Calibrate main PC board	Refer to: Section B - Main PC Board

| Problem | Symptom | Probable Cause | Check |
| :--- | :--- | :--- | :--- | :--- |
| Rotational base is
 malfunctioning. | Rotational brake will not lock. | Rotational brake mechanism | Unplug table power cord.
 If base rotation locks, perform
 Rot. Brake Electrical Test. |
| R | | | |

Models:	647 all	

Problem	Symptom	Probable Cause	Check	Correction
No power at chair receptacles.	There is power to the chair, but no power at the chair receptacles.	Loose / damaged wire connections	Wire connections between power inlet \& table receptacles	Secure / repair wire connections.
		Isolation transformer / receptacles	Perform Output Voltage Test. Refer to: Section B Chair Receptacles / Isolation Transformer	Follow test sequence outlined in Section B.
Foot extension malfunctioning.	Foot extension will not lock in place. - or - Foot extension will not release.	Foot extension locking mechanism malfunctioning.	Perform Locking Mechanism Inspection. Refer to: Section B - Foot Extension.	Follow instructions outlined in Section B.

Models:	647 Serial Numbers:	

Power to the Chair (models w/Standard Base)

This illustration shows only the components that affect ALL CHAIR FUNCTIONS.
Refer to the following page for a detailed description of the power supply to the chair.

Power to the Chair (models w/Standard Base)

Facility Supply Voltage

WIth the chair's power cord properly connected, facility supply voltage (115 VAC) is supplied thru the cord to the power inlet.

Power Inlet

Equipment Alert

The voltage setting displayed in the power inlet window must match facility supply voltage (115 VAC).

Current flows thru two fuses in the power inlet, to the main system transformer.

Main System Transformer

Note

This transformer is protected from overload by a thermal cutout
feature. This will automatically reset when the transformer cools.
Line voltage (115 VAC) is supplied to the main system transformer. The transformer reduces the voltage and current flows to the main PC board thru two separate windings (four wires).
[The black \& white wires supply 48-54 VAC to power circuitry for the Base \& Back actuators only]
[The red \& orange wires supply 34-37 VAC to power circuitry for the Tilt actuator, foot control, touch pads, power light, all limit switches, and position sensors].

Voltage setting displayed in the power inlet window must match facility supply voltage (115 VAC).

Power Indicator Light

When voltage is applied to the PC board, the power light is illuminated.

Main PC Board

Circuitry on the PC board provides the required voltage to power all of the table's components: foot control, actuators, limit switches, and position sensors.

Foot Control / Touch Pads

Circuitry on the main PC board supplies 8-10 VAC to the foot control \& touch pads.

Models:	647 Serial Numbers:	

Power to the Chair (models w/Rotational Base)

This illustration shows only the components that affect ALL CHAIR FUNCTIONS.
Refer to the following page for a detailed description of the power supply to the chair.

Power to the Chair (models w/Rotational Base)

Facility Supply Voltage

WIth the chair's power cord properly connected, facility supply voltage (115 VAC) is supplied thru the cord to the power inlet.

Power Inlet / EMI Filter Board

Equipment Alert

The voltage setting displayed in the power inlet window must match facility supply voltage (115 VAC).

Current flows from the power inlet thru the EMI filter board, then back thru the power inlet fuses to the rotational base PC board.

Rotational Base PC Board

Current flows thru the rotational base PC board to the main system transformer. The transformer reduces the voltage and current flows back to the rotational base PC board.

Circuitry on the rotational base PC board provides the required voltage to power the rotational base brake system.

The reduced voltage is supplied to the main PC board thru the rotational bse PC board.

Main System Transformer

Note

This transformer is protected from overload by a thermal cutout feature. This will automatically reset when the transformer cools.

Line voltage (115 VAC) is supplied to the main system transformer thru the rotational base PC board. The transformer reduces the voltage and current flows back to the rotational base PC board, then to the main PC board thru two separate windings (four wires).

Main System Transformer - continued

[The black \& white wires supply 48-54 VAC to power circuitry for the Base \& Back actuators only]
[The red \& orange wires supply 34-37 VAC to power circuitry for the Tilt actuator, foot control, touch pads, power light, all limit switches, and position sensors].

Power Indicator Light

When voltage is applied to the PC board, the power light is illuminated.

Main PC Board

Circuitry on the PC board provides the required voltage to power all of the table's components: foot control, actuators, limit switches, and position sensors.

Foot Control / Touch Pads

Circuitry on the main PC board supplies 8-10 VAC to the foot control \& touch pads.

Base UP / DOWN Function

This illustration shows only the components that affect the Base UP / DOWN function. Refer to the following page for a detailed description of Base UP / DOWN operation.

No Base Up or Base Down................A-2
No Base Up. Base Down - OK
A-3
No Base Down. Base Up - OKA-3
Base drifts down.................................A-3
Noisy operation
(grinding, squeaking, etc)
A-3
Function moves slowly, and/or
will not lift patient. A-4
Function moves briefly,
then stops and "beeps"

Models:	647 Serial Numbers:	

Base UP / DOWN Function

Is there power to the table?

When voltage is present at the PC board, the power light is illuminated.
[Refer to 'Power to the Table' (page A-2) for description of current flow to the PC board].

Power to Foot Control / Touch Pads

 Circuitry on the PC board supplies 8-10 VAC to the foot control \& touch pads.
Base Up Operation

When the Base Up function is activated, current flows thru the foot control / touch pads to the main PC board. Circuitry on the main PC board supplies approximately 48 VDC to the base actuator motor.

The actuator motor runs and raises the table.

Note

The main PC board continuously monitors the base up limit switch and the base position sensor.

If the base up limit switch is tripped (open), the Base Up function will not operate.

If the base position sensor detects that that table has reached its upper limit, the Base Up function will not operate.

Actuator motor runs until:

1. Foot control / touch pad button is released.
2. Base Up limit switch is tripped.
3. Emergency Stop button is pressed.
4. Position sensor detects upper limit.
5. Overcurrent protection tripped
6. Software timeout is reached (25 seconds).

Base Down Operation

When the Base Down function is activated, current flows thru the foot control / touch pads to the main PC board. Circuitry on the main PC board supplies approximately 48 VDC to the base actuator motor.

The actuator motor runs and lowers the table.

Note

The main PC board continuously monitors the base down limit switch and the base position sensor.

If the base down limit switch is tripped (open), the Base Down function will not operate.

If the base position sensor detects that the table is in a potential "crash position", or that the base has reached its lower limit, the Base Down function will not operate*.

Actuator motor runs until:

1. Foot control / touch pad button is released.
2. Base Down limit switch is tripped.
3. Crash Avoidance System activated*.
4. Emergency Stop button is pressed
5. Position sensor detects lower limit.
6. Overcurrent protection tripped
7. Software timeout is reached (25 seconds).

Models:	647	
Serial Numbers:	all	

* Refer to Section A: Crash Avoidance System for a detailed description of "crash position", and the functions that are disabled.

Back UP / DOWN Function

This illustration shows only the components that affect the Back UP / DOWN function. Refer to the following page for a detailed description of Back UP / DOWN operation.
No Back Up or Back Down A-4
No Back Up. Back Down - OK A-5
No Back Down. Back Up - OK. A-5
Back drifts down A-5
Noisy operation
(grinding, squeaking, etc) A-5
Function moves slowly, and/or
will not lift patient A-5
Function moves briefly.then stops and "beeps"A-6

[Only the wires that affect this function are shown]

Note: On models w/rotational base, the main system transformer connections are supplied thru the Rotational Base PC board (not shown).

[Black \& white wires supply 48-54 VAC to power circuitry for the Base \& Back actuators]

$$
\text { (} 1+2
$$

Proper voltage is present at PC board

Models:	647	
Serial Numbers:	all	

Back UP / DOWN Function

Is there power to the table?

When voltage is present at the PC board, the power light is illuminated. [Refer to 'Power to the Table' (page A-2) for description of current flow to the PC board].

Power to Foot Control / Touch Pads

Circuitry on the PC board supplies 8-10 VAC to the foot control \& touch pads.

Back Up Operation

When the Back Up function is activated, current flows thru the foot control / touch pads to the main PC board. Circuitry on the main PC board supplies approximately 48 VDC to the back actuator motor.

The actuator motor runs and raises the back section.

Note

The main PC board continuously monitors the back up limit switch and the back position sensor.

If the back up limit switch is tripped (closed), the Back Up function will not operate.

If the back position sensor detects that the back has reached its upper limit, the Back Up function will not operate.

Actuator motor runs until:

1. Foot control / touch pad button is released.
2. Back Up limit switch is tripped.
3. Emergency Stop button is pressed.
4. Position sensor detects upper limit.
5. Overcurrent protection tripped
6. Software timeout is reached (30 seconds).

Back Down Operation

When the Back Down function is activated, current flows thru the foot control / touch pads to the main PC board. Circuitry on the main PC board supplies approximately
44 VDC to the back actuator motor.
The actuator motor runs and lowers the back section.

Note

The main PC board continuously monitors the back down limit switch and the back position sensor.

If the back down limit switch is tripped (open), the Back Down function will not operate.

If the back position sensor detects that the table is in a potential "crash position", or that the back section has reached its lower limit, the Back Down function will not operate*.

Actuator motor runs until:

1. Foot control / touch pad button is released.
2. Back Down limit switch is tripped.
3. Crash Avoidance System activated*.
4. Emergency Stop button is pressed.
5. Position sensor detects lower limit.
6. Overcurrent protection tripped
7. Software timeout is reached (30 seconds).

Models:	647	
Serial Numbers:	all	

*Refer to Section A: Crash Avoidance System for a detailed description of "crash position", and the functions that are disabled.

Tilt UP / DOWN Function

This illustration shows only the components that affect the Tilt UP / DOWN function. Refer to the following page for a detailed description of Tilt UP / DOWN operation.
No Tilt Up or Tilt Down A-6
No Tilt Up. Tilt Down - OK A-6
No Tilt Down. Tilt Up - OK A-6
Seat drifts down A-7
Noisy operation
(grinding, squeaking, etc) A-7
Function moves slowly, and/or
will not lift patient A-7
Function moves briefly,

Tilt UP / DOWN Function

Is there power to the table?

When voltage is present at the PC board, the power light is illuminated. [Refer to 'Power to the Table' (page A-2) for description of current flow to the PC board].

Power to Foot Control / Touch Pads

Circuitry on the PC board supplies 8-10 VAC to the foot control \& touch pads.

Tilt Up Operation

When the Tilt Up function is activated, current flows thru the foot control / touch pad to the main PC board. Circuitry on the main PC board supplies approximately 48 VDC to the tilt actuator motor.

The actuator motor runs and raises the seat section.

Note

The main PC board continuously monitors the tilt position sensor.

When the tilt position sensor detects that the seat section has reached its upper limit, or that the table is in a potential "crash position", the Tilt Up function will not operate*.

Actuator motor runs until:

1. Foot control / touch pad button is released.
2. Crash Avoidance System activated*.
3. Emergency Stop button is pressed.
4. Position sensor detects upper limit.
5. Overcurrent protection tripped
6. Software timeout is reached (30 seconds).

Tilt Down Operation

When the Tilt Down function is activated, current flows thru the foot control / touch pad to the main PC board. Circuitry on the main PC board supplies approximately
48 VDC to the tilt actuator motor.
The actuator motor runs and lowers the seat section back to a flat position.

Note

The main PC board continuously monitors the tilt down limit switch and the tilt position sensor.

If the tilt down limit switch is tripped (open), the tilt Down function will not operate.

If the tilt position sensor detects that the table is in a potential "crash position", or that the seat section has reached its lower limit, the Tilt Down function will not operate*.

Actuator motor runs until:

1. Foot control / touch pad button is released.
2. Tilt Down limit switch is tripped.
3. Crash Avoidance System activated*.
4. Emergency Stop button is pressed.
5. Position sensor detects lower limit.
6. Overcurrent protection tripped
7. Software timeout is reached (30 seconds).

Models: Serial Numbers:	647 all	

*Refer to Section A: Crash Avoidance System for a detailed description of "crash position", and the functions that are disabled.

Crash Avoidance System

The Crash Avoidance System prevents damage to the table by disabling certain functions if a
potential crash position is detected.
This illustration shows only the components that are monitored by the Crash Avoidance System.
Refer to the following page for a detailed description of "crash position" and how the system functions.

[Only the wires that affect this function are shown]

If actuator(s) are not working properly, refer to that section for troublshooting (ex. Base Up / Down).

If power light is OFF:
Refer to 'Power to the Table' for troubleshooting.
If power light is ON:
Proper voltage is present at PC board.

Models: Serial Numbers:	647 all	

Crash Avoidance System

When are functions disabled?

The main PC board continuously monitors the three position sensors, as well as the foot extension switch.

Based on the position sensor readings, circuitry on the main PC board estimates the position of the back section. If the estimated position indicates a potential collision with the floor, the Base Down, Tilt Up, and/or Back Down
functions are disabled.
If the foot extension switch is tripped* (open), the Base Down and Tilt Down functions will be disabled.
[* The foot extension switch is tripped when upward pressure is applied to the foot section].

When are functions restored?

Functionality is restored when one or more of the axis are moved out of the potential crash position, and / or when the foot extension switch is no longer tripped (closed).

What is "Crash Position"?

The table is considered to be in a potential crash position when:
A. The Base, Back, and Tilt position sensors indicate that the back section is approximately x in ($x \times \mathrm{cm}$) from the floor.
B. The foot extension switch is tripped (open). [This is designed to prevent damage due to objects being trapped under the foot section].

Models: Serial Numbers:	647 all	

Position Programming

The programming feature allows the user to store up to three frequently used table positions.
This illustration shows only the components that affect the position programming.
Refer to the following page for a detailed description of this feature.

Positions cannot be programmed......A-7 When position button (1, 2, or 3) is pressed:
Chair does not move. \qquad
Chair moves to wrong position A-7

Position Programming

When are functions disabled?

The three position sensors continuously monitor the position of each axis (Base, Back, \& Tilt).
This information is transmitted to the PC board.
When a table position is properly programmed into the PC board's memory, the position of each axis is recorded based on the readings from the position sensors.

Recalling a programmed position

When a programmed position is recalled, the PC board activates the required functions (all at the same time) until the readings from the position sensors match those of the recorded position.

To program a table position..

A) Move the table to desired position.
B) Press the Program button (one "beep").
C) Press the desired Position button (1, 2, or 3). (three "beeps")

Tip: You must press the desired Position button within five seconds of pressing the Program button.

To recall a table position...

Press the desired Position button (1, 2, or 3) momentarily.
Note: In the event of a malfunction, press the Stop button to terminate movement

QuickExam Function

This function activates the Base Up \& Tilt Up functions simultaneously to move the table into "exam position".
This illustration shows only the components that affect the QuickExam function. Refer to the following page for a detailed description of this feature.

QuickExam Function

What is "Exam Position"?

Base: all the way up
Tilt: all the way up
Back: any position
How it works...
When the QuickExam button is presssed \& held, the PC board activates the following functions:

Function
Base Up Tilt Up

Runs until...
Base Up limit switch is tripped
Tilt position sensor indicates seat is all the way up

To activate the QuickExam function...
A) Press \& hold the QuickExam button.
B) Release button when table reaches desired position.

Note: In the event of a malfunction, press the Stop button.

QuickChair Function

This function activates the Base Down, Back Up, \& Tilt Down functions simultaneously to move the table into "chair position".

This illustration shows only the components that affect the QuickChair function.
Refer to the following page for a detailed description of this feature.

Models:	647 all	

QuickChair Function

What is "Chair Position"?

Base: all the way down
Tilt: all the way down
Back: all the way up

How it works...
When the QuickChair button is presssed \& held, the PC board activates the following functions:

$\frac{\text { Function }}{\text { Base Down }}$	Runs until... Base Down limit switch is tripped Tilt Down
Back Up	Tilt Down limit switch is tripped
	Back Up limit swittch is tripped

To activate the QuickChair function... Press \& release the QuickChair button.

Note: In the event of a malfunction, press the Stop button

MATsesp
QuickChair

Models:	647 all	

Chair Receptacles

This illustration shows only the components that affect the chair receptacles
A detailed description of current flow also appears below.
[Only the wires that affect this function are shown]

Facility Supply Voltage

With the power cord properly connected, facility supply voltage (115 VAC) is supplied to the power inlet.

Power Inlet

Current flows thru two fuses in the power inlet, to the isolation transformer.

Isolation Transformer

Note

The isolation transformer separates the receptacles from the rest of the table's electrical system. This transformer is protected from overload by a thermal cutout feature. It will automatically reset when the transformer cools.

The isolation transformer provides 115 VAC to each of the table receptacles.

Rotational Base Brake System

This illustration shows only the components that affect the Rotational Base Brake System. A detailed description of current flow also appears below.

Models:	647 all	

Foot Extension

This illustration highlights the main components of the foot extension mechanism.

Locking Mechanism

When either foot extension lever is pressed, the associated linkage retracts the two locking devices. When the "teeth" on the locking devices disengage the slotted plates, the foot extension can be extended / retracted as desired.

When the foot extension levers are released, the torsion springs cause the locking devices to engage the slotted plates, locking the foot extension in place.

Models: Serial Numbers:	647 all	

Testing \& Adjustments

Primary Fuses$B-2$Foot Control / Touch Pads B-3
Base Actuator / Limit Switches. B-7
Back Actuator / Limit Switches $B-12$
Tilt Actuator / Limit Switch B-16
Gas Springs. B-20Chair Receptacles(Isolation Transformer)B-21
Main System Transformer B-22
Position SensorsB-30Main PC BoardB-30Foot Extension /"Crash" Limit SwitchB-33
Rotational Base Brake System B-35

Primary Fuses

Replacement

Equipment Alert

When replacing fuses, rotate fuse holder so that the correct voltage setting (115 VAC) appears in the window.

Foot Control / Touch Pads

Isolating a Malfunction

To isolate a malfunction, try activating the inoperable function(s) from each touch pad and the foot control.

If function(s) are inoperable from the foot control...

A) Secure the foot control cord connection at the cord inlet.
B) Secure inlet harness connection to main PC board (J10)

If function(s) still inoperable:
C) Perform the Foot Control / Touch Pad Test.

If function(s) are inoperable from one touch pad...
A) Secure connection from inoperable touch pad to touch pad harness.

If function(s) still inoperable:
B) Perform the Foot Control / Touch Pad Test.

If function(s) are inoperable from both touch pads...

Note

The foot control cord connector is "keyed" and must be oriented properly to connect. Tighten locking ring to secure connection.

A) Secure connections from touch pads to touch pad harness.
B) Secure connection from touch pad harness to extension harness.
C) Secure extension harness connection to PC board (J9).

If function(s) still inoperable:
D) Perform the Foot Control / Touch Pad Test.

Foot Control / Touch Pads - continued

Foot Control / Touch Pad Test

Models:	647 Serial Numbers:	

Foot Control / Touch Pads - continued

Foot Control Cord Test

Step 2: Place meter probe on pin \#1 of round connector.
Place other meter probe on pin \#1 of flat connector. Check meter reading.
Repeat for remaining pins.

Foot Control / Touch Pads - continued

Touch Pad Harness / Extension Harness Test

Base Actuator / Limit Switches

Isolating a Malfunction

This illustration shows the base limit switches and the three serviceable components of the base actuator. Use the table below to isolate the malfunction.

Problem	Required Action
Motor runs, but makes grinding noise.	Clean / lube actuator threads. Replace actuator if necessary*.
Motor runs, but table does not move.	Inspect / replace motor coupler*.
Motor does not run.	Perform Limit Switch / Harness Test

Limit Switch / Harness Test B-8
Actuator Motor Test B-9
PC Board Test B-10
Access Procedures C-1
Wiring Diagrams D-1
Exploded View / Part Numbers. E-20
www.Midmark.com:

Models: Serial Numbers:	647 all	

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Base Actuator / Limit Switches - continued

With switch "untripped"...

Meter Reading	Required Action
OL	Perform Limit Switch Continuity Test
less than 10 ohms	Limit switch / harness - OK Perform Actuator Motor Test

With switch "tripped"...

Meter Reading	Required Action
OL	Limit switch / harness - OK Perform Actuator Motor Test
less than 10 ohms	Perform Limit Switch Continuity Test

Limit Switch Continuity Test

Step 1: Disconnect wires from switch.

Step 2: Place meter probes on COM and NC terminals.

Note: Check switch "tripped" and "untripped".

With switch "untripped"...

Meter Reading	Required Action
OL	Replace limit switch
less than 5 ohms	Limit switch - OK Replace limit switch harness.

With switch "tripped"...

Meter Reading	Required Action
OL	Limit switch - OK Replace limit switch harness.
less than 5 ohms	Replace limit switch

Base Actuator / Limit Switches - continued

www.Midmark.com:

Actuator Motor Test
2-2

Step 1: Tag and disconnect base actuator wires (J1 \& J2).

Step 2: Place meter probes on actuator wires. Check meter reading.

Meter Reading	Required Action
$\mathbf{1}$ to $\mathbf{1 0}$ ohms	Actuator motor - OK Perform Motor Ground Test
OL -or- less than 5 ohms	Replace actuator motor*

Models:	647 Serial Numbers:	

* Replacement instructions are provided with the part. They are also available on documark.com, or by clicking on the blue link.

Base Actuator / Limit Switches - continued

PC Board Test
Back Section
Max. Position

Step 6: Press \& hold Base Down button for 5 seconds.
Does back section move down briefly, then stop \& 'beep'? If YES, PC board is OK.
If NO, replace PC board*.

Models:	647 all	

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Base Actuator / Limit Switches - continued

PC Board Test

Back Section
 Max. Position

www.Midmark.com:

PC Board Replacement...... 003-1490-00

Base

 Max. Position (Up limit switch is tripped)

Base

Min. Position ${ }^{(D o w n ~ l i m i t ~ s w i t c h ~ i s ~ t r i p p e d) ~}$

ATTENTION: This test cannot be performed if either base limit switch is tripped.

Step 3: If necessary, remove base limit switch bracket. Switch wires must remain connected.

Equipment Alert

The back limit switches will not stop movement during this test. Do not run past max / min positions.

Step 5: Press \& hold Base Up button for 5 seconds.
Does back section move up briefly, then stop \& 'beep'? If YES, go to Step 6.
If NO, replace PC board*

Step 6: Press \& hold Base Down button for 5 seconds.
Does back section move down briefly, then stop \& 'beep'? If YES, PC board is OK.
If NO, replace PC board*.

Models:	647 Serial Numbers:	

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Back Actuator / Limit Switches

Isolating a Malfunction

This illustration shows the back limit switches and the three serviceable components of the back actuator. Use the table below to isolate the malfunction.

Problem	Required Action
Motor runs, but makes grinding noise.	Clean / lube actuator threads. Replace actuator if necessary*.
Motor runs, but table does not move.	Inspect / replace motor coupler*.
Motor does not run.	Perform Limit Switch / PCB Harness Test

Limit Switch / PCB Harness Test.....B-13

Actuator Motor Test

B-15

PC Board Test

Access Procedure C-1

Wiring Diagrams.
D-1

Exploded View / Part Numbers.
E-21

www.Midmark.com:

Back Actuator /
Motor Replacement

Back Limit Switches

Equipment Alert

Do not adjust the individual switches! The limit switches \& bracket must be replaced as a complete assembly.

Models:	647 Serial Numbers:	

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Back Actuator / Limit Switches - continued

Limit Switch / PC Board Harness Test

Back Down switch "tripped"... - ORBack Up switch "untripped"...

Meter Reading	Required Action
OL	Limit switch / harness - OK Perform Actuator Motor Test
less than $\mathbf{1 0}$ ohms	Perform Limit Switch Harness Test

Back Down switch "untripped"... - ORBack Up switch "tripped"...

Meter Reading	Required Action
OL	Perform Limit Switch Harness Test
less than $\mathbf{1 0}$ ohms	Limit switch / harness - OK Perform Actuator Motor Test

Step 3: Place other probe on the wire corresponding the desired switch (see illustration).
Note: Check switch "tripped" \& "untripped".

Back Actuator / Limit Switches - continued

Limit Switch Harness Test

Step 1: Unplug the appropriate limit switch harness.

Step 2: Measure continuity.

Meter reading should be...

Meter reading should be...	
Actuator Full Up	White to Black - Open White to Red - Closed
Actuator Full Down	White to Black - Closed White to Red - Open
Actuator Midway Point	White to Black - Closed White to Red - Closed

Back Actuator / Limit Switches - continued

www.Midmark.com:

\qquad
Step 1: Tag and disconnect back actuator wires (J3 \& J4).

Step 2: Place meter probes on actuator wires. Check meter reading.

Meter Reading	Required Action
$\mathbf{1}$ to $\mathbf{1 0}$ ohms	Actuator motor - OK Perform Motor Ground Test
OL -or- less than $\mathbf{1}$ ohms	Replace actuator motor*

Motor Ground Test

Step 1: Place one meter probe on actuator wire (J3). Place other probe on PC board ground wire. Check meter reading. (Repeat for J4)

Meter Reading	Required Action
OL -or- more than 1 mega-ohm	Motor harness - OK Perform PC Board Test
less than 1 ohm	Replace actuator motor*

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Back Actuator / Limit Switches - continued

ATTENTION: This test cannot be performed with the back section in the max. or min position.

Step 1: If necessary, reposition the back section.

Equipment Alert

The base limit switches will not stop movement during this test. Do not run past max / min positions.

Step 5: Press \& hold Back Up button for 5 seconds.
Does the base move up, then stop \& 'beep'?
If YES, go to Step 6.
If NO, replace PC board*.

Step 6: Press \& hold Back Down button for 5 seconds.
Does the base move down, then stop \& 'beep'?
If YES, PC board is OK.
If NO, replace PC board*.

Models:	647 Serial Numbers:	

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Tilt Actuator / Limit Switch

Isolating a Malfunction

This illustration shows the tilt down limit switch and the three serviceable components of the tilt actuator Use the table below to isolate the malfunction.

Problem	Required Action
Motor runs, but makes grinding noise.	Clean / lube actuator threads. Replace actuator if necessary*.
Motor runs, but table does not move.	Inspect / replace motor coupler*.
Motor does not run.	(UP only) PerformOutput Voltage Test (at Tilt Sensor) (Down only) Perform Limit Switch Test (Up \& Down) Perform

Actuator Motor Test B-20
PC Board Test B-21
Access Procedures. C-1
Wiring Diagrams. D-1
Exploded View / Part Numbers. E-19
www.Midmark.com:
Tilt Actuator /

(There is only one limit switch for the Tilt function. The upper limit is controlled by the Tilt position sensor)

Actuator Motor

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Tilt Actuator / Limit Switch - continued

Limit Switch / PC Board Harness Test

Step 1: Disconnect harness from J11 on main PC board.

Step 3: Place other probe on the Tilt Down limit switch (red).

Note: Check switch "tripped" \& "untripped".

With switch "untripped"...

Meter Reading	Required Action
OL	Perform Limit Switch Harness Test
less than 10 ohms	Limit switch / harness - OK Perform Actuator Motor Test

With switch "tripped"...
Meter Reading Required Action

OL	Limit switch / harness - OK Perform Actuator Motor Test
less than 10 ohms	Perform Limit Switch Harness Test

[^0]| Models: | 647
 all | |
| ---: | :---: | :--- |

Tilt Actuator / Limit Switch - continued

Limit Switch Harness Test

Step 1: Unplug the appropriate limit switch harness.

Step 2: Measure continuity.

Meter reading should be...

Actuator Full Up	White to Black - Open White to Red - Closed
Actuator Full Down	White to Black - Closed White to Red - Open
Actuator Midway Point	White to Black - Closed White to Red - Closed

Limit Switch Continuity Test

Step 1: Disconnect wires from switch.

Step 2: Place meter probes on COM and NC terminals.

Note: Check switch "tripped" and "untripped".

With switch "untripped"...

Meter Reading	Required Action
OL	Replace limit switch
less than 5 ohms	Limit switch - OK Replace limit switch harness.

With switch "tripped"...

Meter Reading	Required Action
OL	Limit switch - OK Replace limit switch harness.
less than 5 ohms	Replace limit switch

Models:	647 all	

Tilt Actuator / Limit Switch - continued

Actuator Motor Test

www.Midmark.com:

Motor Ground Test

Step 1: Place one meter probe on actuator wire (J7). Place other probe on PC board ground wire. Check meter reading. (Repeat for J8)

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Tilt Actuator / Limit Switch - continued

PC Board Test

Step 1: Tag, then disconnect tilt

Step 2: Place meter probes on J7 \& J8 terminals on PC board
(Meter setting: VDC)

Step 3: Activate the Tilt Up function.
Check meter reading
Repeat for Tilt Down function.

Meter Reading	Required Action
approx 48 VDC	PC board - OK
out of range	Replace PC board ${ }^{*}$

Gas Springs

Access Procedures.

C-1| Problem | Required Action |
| :--- | :--- |
| Squeaking, grinding sound coming from
 pivot joints. | Clean / lube pivot joints.
 (lubricant: lithium grease) |
| Diminished lifting capacity.
 (Base actuator - OK) | Replace gas springs*. |

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Always verify model \& serial number

Chair Receptacles (Isolation Transformer)

[Note: The isolation transformer affects the chair receptacles only].
Isolation Transformer Output Voltage Test

Step 1: Place meter probes on receptacle screws as shown.
Check meter reading.

Meter Reading	Required Action
$\mathbf{1 2 0}$ VAC ($\pm \mathbf{1 0 \%}$)	Isolation transformer - OK Replace receptacle(s).
less than 108 VAC	If table power light is ON, replace isolation transformer. If power light is OFF, check supply voltage.

MA657700i

Main System Transformer

[Note: The main system transformer affects all table functions (except chair receptacles)].

Output Voltage Test

```Reisitance Test.\(B-23\)
```

Access Procedures C-1
Wiring Diagrams. D-1
Exploded View / Part Numbers:

```Standard BaseE-12
```

Rotational Base E-13

Models: Serial Numbers:	647 all	

Main System Transformer - continued

Resistance Test

Position Sensors

Testing

Step 1: Verify position sensor shoulder bolts are tight ($50 \mathrm{ft}-\mathrm{lbs}$).
Note: This step does not apply to the Base sensor.

www.Midmark.com:

Position Sensor
Replacement \qquad
Step 2: Perform Output Voltage Test (at Sensor)
Note: This test must always be performed first.
The results of this test determine the next required action.
Location

Position Sensors - continued

Output Voltage Test (at Sensor)

Note: If Tilt is stuck in Down position...

Disconnect the White and Black wires at J7 \& J8 on Main PC Board. Connect Black wire to J7 and White wire to J8. Perform Output Voltage Test on the Tilt Up function by pressing the Tilt DOWN button.

Caution: Do not run Tilt Up function beyond the halfway position.

Reconnect White wire to J7 and Black wire to J8. Perform Output Voltage Test on the Tilt Down function.

Step 1: Set meter to VDC.

Step 2: Place meter probes on proper terminals.
$\begin{aligned} \text { Step 2: } & \text { Place meter probes on prope } \\ & \text { (See appropriate illustration) }\end{aligned}$

Step 3: Run desired function up \& down.
Watch meter reading as function moves.

Meter Reading	Required Action
Voltage steadily increases / decreases as function moves up / down	Perform Output Voltage Test
Voltage doesn't change, or changes erratically moves up / down	Perform Supply Voltage Test
(at Sensor)	

Models: Serial Numbers:	647 all	

Position Sensors - continued

Output Voltage Test (at PC Board)

Step 1: Set meter to VDC.

Step 2: Place meter probes on proper wires. (See appropriate illustration)

Step 3: Run desired function up \& down. Watch meter reading as function moves.

Note: Each sensor has a different voltage range. The important thing to watch for is whether the voltage changes as the functions moves.

Meter Reading	Required Action
Voltage steadily increases / decreases as function moves up / down	Replace PC board* (see NOTE)
Voltage doesn't change, or changes erratically as function moves up / down	PC board - OK Inspect wire harness connections.

Note

Before replacing PC board, be sure shoulder bolt at the sensor pivot point is tight. If bolt is loose, tighten it, then recalibrate PC board \& check for proper operation.

Models:	647 all	

* Replacement instructions are provided with the part. They are also available on midmark.com,
or by clicking on the blue link.

Position Sensors - continued

Supply Voltage Test (at Sensor)

Models:	647 all	

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Position Sensors - continued

www.Midmark.com:

PC Board Replacement...... 003-1490-00
Supply Voltage Test (at PC Board)

Step 1: Set meter to VDC.

Step 2: Place meter probes on proper wires.
(See appropriate illustration)

Required Action

Meter Reading	Required Action
2 to 4 VDC	Replace wire harness between: [sensor \& junction board] - or - [junction board \& PC board]
less than 2 VDC more than 4 VDC	Replace PC board*.

Models:	647 Serial Numbers:	

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Position Sensors - continued

Sensor	Function Position	Voltage Reading s/n V2200 thru V921393
BASE	all the way UP	1.7 to 2.1 VDC
BACK	all the way UP	2.4 to 2.6 VDC
TILT	all the way DOWN	1.8 to 2.1 VDC
FOOT	all the way UP	2.4 to 2.6 VDC

Step 2: Position table function as indicated in the chart.
Turn sensor knob until voltage reading is in the indicated range.

Models: Serial Numbers:	647 all	

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

[^1][Revised: 7/14/10]
B-31
Always verify model \& serial number

Main PC Board

Error Codes

If the PC board detects a malfunction in the electrical system, the two error code LEDs on the PC board will flash in a specific sequence to identify the cause of the problem.
Calibration ProcedureB-32
Access Procedures C-1
Wiring Diagrams. D-1
Exploded View /
Standard BaseE-12
Rotational Base E-13

How to Display an Error Code
If you suspect a problem with a specific function...
A) Remove PC board cover, then locate error code LEDs.
B) Activate desired function from foot control or touch pad.

If an electrical malfunction is detected:

- Function will stop moving
- You will hear a "beep"
- Error code LEDs will flash error code sequence

How to Recall Last Five Error Codes

To recall the last five error codes...

A) Move both MODE SELECT switches to ON (up).
B) Unplug table (to reset PC board), then plug back in.
C) Press and release S2 button.
(To repeat error codes, press S2 button again)
(To erase all error codes from memory, press \& hold S2
button until you hear three "beeps")
If there are error codes stored in the system memory:

- Error code LEDs will flash error code sequence of the five most recent error codes.
(You will hear three "beeps" between each error code)

Main PC Board - continued

Error Codes - continued

Identification

Digit 1 LED: This LED identifies the function or mode during which the error was detected. (ex. Base / Back / Tilt, Programming Mode, Calibration Mode)
Record the number of times this LED flashes before Digit 2 LED begins to flash.
Digit 2 LED: This LED identifies the cause of the error. (ex. motor overload, incorrect button pressed, etc) Record the number of times this LED flashes before Digit 1 LED flashes again.

MA657200i
Locate the two digit error code in the charts below:

\# of flashes) Digit 1 LED	Table Function	(\# of flashes) Digit 2 LED	Cause of the Error
$\mathbf{1}$	BASE	$\mathbf{1}$	Table in potential "crash position"
$\mathbf{2}$	BACK	$\mathbf{2}$	Actuator motor run time exceeded max. limit
$\mathbf{3}$	TILT	$\mathbf{3}$	Position sensor did not move when function was activated
		$\mathbf{4}$	Position sensor reading is out of acceptable range
		$\mathbf{5}$	Actuator motor overload
		$\mathbf{6}$	Function failed during calibration

\#\# of flashes) Digit 1 LED	Mode	(\# of flashes) Digit 2 LED	Cause of the Error
$\mathbf{7}$	Programming Mode	$\mathbf{1}$	Position button (1, 2, 3) not pressed within 5 seconds
		$\mathbf{2}$	Incorrect button pressed while in Programming Mode
		$\mathbf{3}$	Position cannot be programmed (potential "crash" position)

(\# of flashes) Digit 1 LED	Mode	(\# of flashes) Digit 2 LED	Cause of the Error
	Calibration Mode	$\mathbf{1}$	Calibration was not successful
		$\mathbf{2}$	Incorrect button pressed while in Calibration Mode
	Error Recall Mode	$\mathbf{3}$	Incorrect button pressed while in Error Recall Mode

(\# of flashes) Digit 1 LED	Mode	(\# of flashes) Digit 2 LED	Cause of the Error
9	Software System	1	Software malfunction (need to recalibrate PC board)
		2	
		3	
		4	Foot extension switch is tripped
		9	Disregard this error

Models:	647 all	

Main PC Board - continued

Calibration Procedure

During the calibration procedure, the PC board records the voltage readings from the position sensors as the base, back, and foot actuators move to their maximum, then minimum positions. Note: The tilt actuator will only move momentarily as it clears the tilt down limit switch and then returns to the minimum position. You will hear a steady pattern of "beeps" as the table moves during calibration. When successful calibration is complete, the table will stop moving and you will hear three "beeps".

You must calibrate the PC board in the following situations:

- After disconnecting / replacing the PC board
- After disconnecting / replacing any of the position sensors

Step 4: Wait five seconds, then press S 2 button.

Switch 2 - OFF (down)

Step 3: Unplug table (to reset PC board) then plug table back in.

Equipment Alert

On models with rotational base, remove PC board cover before performing the calibration procedure.

Foot Extension / "Crash" Limit Switch

Locking Mechanism Inspection

Step 1: Remove foot extension upholstery and substrate (not shown).

Step 2: Press foot extension lever(s). Extend / retract foot extension.
[Linkage should retract two locking devices, disengaging the "teeth" from the slotted plates. This should allow foot extension to slide in / out].

Step 3: Release foot extension lever(s).
[The torsion springs should pull the two locking devices into the locked position. The "teeth" should engage the slotted plates, locking the foot extension in position.]

Models: Serial Numbers:	647 all	

Foot Extension / "Crash" Limit Switch - continued

"Crash" Limit Switch / Harness Test

Step 1: Disconnect harness from J11 on main PC board.

Step 3: Place other probe on the "Crash" limit switch wire (black / white).

Note: Check switch "tripped" \& "untripped"

With switch "untripped"...

Meter Reading	Required Action
OL	Perform Limit Switch Continuity Test
less than 10 ohms	Limit switch / harness - OK Test inoperable function(s).

With switch "tripped"...

Meter Reading	Required Action
OL	Limit switch / harness - OK Test inoperable function(s).
less than 10 ohms	Perform Limit Switch Continuity Test

Limit Switch Continuity Test

Step 1: Tag and disconnect switch wires.

Step 2: Place meter probes on COM and NC terminals.

Note: Check switch 'ripped' and 'untripped'.

With switch 'untripped'...

Meter Reading	Required Action
OL	Replace limit switch.
less than 5Ω	Limit switch - OK

With switch 'tripped'...

Meter Reading	Required Action
OL	Limit switch - OK
less than 5Ω	Replace limit switch.

Models:	647	
Serial Numbers:	all	

Rotational Base Brake System

Isolating a Malfunction

Rroblem	Required Action
Brake will not lock.	Unplug table power cord. Does the brake lock? If YES, perform Rot. Brake Electrical Test. If NO, inspect the mechanical brake components. (Refer to: Brake Lever / Electro-magnet Access)
Base wobbles when locked. - and / or - Grinding noise when base rotates.	Without separating the castings, remove any debris between upper \& lower castings. Inspect needle bearing \& brake disk for damage. Tighten hub screws. (Refer to: $\underline{\text { Separating Upper \& Lower Base Castings) }}$
Brake will not unlock.	If one pedal works: Check faulty brake pedal switch. (Refer to: Brake Pedal Switch Access)

Magnet Position Adjustment B-36
Rot. Brake Electrical Test /Fuse Location.B-37
Electro-magnet Test B-38
EMI Filter Board Test B-39
Brake Pedal Switch Access B-40
Separating Upper \& Lower
Base Castings B-41
Brake Lever \&
Electro-magnet Access. B-46
Foot Control Inlet / Power Inlet /
EMI Filter Board Access B-47
Wiring Diagrams D-1
Exploded View / Part Numbers:
Upper Section E-13
Lower Section. E-14
Brake Lever / Electro-magnet. E-15

Step 2: Press \& release the brake pedal.
Can you feel the electro-magnet energize?
If YES: Perform Magnet Position Adjustment.
If NO: Check rotational base PC board fuse. Perform Rotational Brake Electrical Test

Brake Pedal

Models:

Serial Numbers:
647 (-003 \& -004)
© Midmark Corporation 2008 SF-1925

Rotational Base Brake System - continued

Magnet Position Adjustment
If the rotational brake will not unlock, the electro-magnet may be out of adjustment.

Models: Serial Numbers:	$647(-003 \&-004)$ all

Rotational Base Brake System - continued

Rotational Brake Electrical Test / Fuse Location

Rotational Base
Step 1: Remove PC board cover.

PC Board

> Step 2: Place meter probes on wires at J2 on Rotational Base PC Board

Note: If no voltage is detected, press \& release the

Meter Reading	Required Action
15-21 VAC	PC board is OK. Perform Electro-magnet Test
0 VAC	Check Rot. Base PC Board fuse. If fuse is OK - Replace PC board*.

Models: Serial Numbers:	$647(-003 \&-004)$ all	

* Replacement instructions are provided with the part. They are also available on midmark.com, or by clicking on the blue link.

Rotational Base Brake System - continued

Electro-magnet Test

Step 1: Remove PC board cover.
Rotational Base
PC Board

Meter Reading	Required Action
approx. $\mathbf{1 0}$ ohms	Magnet is OK. Check mechanical components.
OL -or- less than 5 ohms	Inspect magnet wire harness. If OK, replace electro-magnet.

Step 2: Disconnect magnet wire harness from J2 on Rot. Base PC Board.

Step 3: Place meter probes on wire harness.

Rotational Base Brake System - continued

EMI Filter Board Test
This test allows you to check for line voltage coming thru the EMI filter board without separating the upper \& lower castings.

```
Step 1: Remove PC board cover.
```


Step 2: Place meter probes on blue wire and brown/white wire at J3 on Rotational Base PC Board.

Models:	$647(-003 \&-004)$
Serial Numbers:	all

Rotational Base Brake System - continued

Brake Pedal Switch Access

Rotational Base Brake System - continued

Separating Upper \& Lower Base Castings

Separating

Step 1: Route bungee cord across top of base column (under seat).

Note: It may be necessary to run the Tilt Up function to route bungee cord under seat section.

$$
\begin{aligned}
& \text { Separating } \\
& \text { Step 2: } \\
& \quad \text { Run Base Up function to its max height. } \\
& \text { Position table so that foot \& back sections } \\
& \text { are level as shown. }
\end{aligned}
$$

Separating

Step 4: Raise shrouds, then attach bungee cord hooks under shrouds on both sides.

Assembly
Step 10: Remove bungee cord
Secure inner shrouds w/screws.

WARNING

Always disconnect table power cord before removing any covers or shrouds.

Separating

Step 3: Remove bottom screws from inner shrouds.

MA7857i

Models: Serial Numbers:	$647(-003 \&-004)$ all	

Procedure continued on following page...

Rotational Base Brake System - continued

Separating Upper \& Lower Base Castings - continued

Rotational Base Brake System - continued

Separating Upper \& Lower Base Castings - continued

\triangle

Caution

The table weighs approx $500 \mathrm{lbs}(226 \mathrm{~kg})$.
Use supports designed for this amount of weight.
Separating
Step 9: Position sawhorses (or other suitable supports) under back \& foot section weldments.

WARNING

Disconnect the table power cord before performing the remaining installation steps.

Assembly

Step 5: Install four hub screws.

\triangle

Caution

The table top / upper base is not secured once the hub screws are removed. Hold onto the table when performing the following steps

Separating
Step 10:
Remove four hub screws.

Models: Serial Numbers:	$647(-003 \&-004)$ all	

Procedure continued on following page...

Rotational Base Brake System - continued

Separating Upper \& Lower Base Castings - continued

WARNING

The steps on this page require power to be connected to the table. Avoid all contact with wiring \& electrical components.

4Caution
The table top / upper base is not secured until the hub screws are installed. Hold

Equipment Alert

The two lower wire harnesses are still connected to upper casting. Running the Base Down function too long may result in damage to the table.

Separating
Step 11: Activate Base Down function until castings separate slightly.

Assembly

Step 4: Carefully adjust table top until alignment studs on bottom of upper casting lock into the notches on the rotation wheel.

Note: You will feel table top drop into place when alignment studs engage notches. onto the table when performing the following steps.

Assembly
Step 3: Activate Base Up function until table raises (slightly) off of supports.

Rotation Wheel
(In Lower Base Assembly)

Models: Serial Numbers:	$647(-003 \&-004)$ all	

Procedure continued on following page...

Rotational Base Brake System - continued

Rotational Base Brake System - continued

Brake Lever \& Electro-magnet Access

Step 1: Separate upper \& lower base castings.
Step 2: Remove corner cover \& top cover from lower base assembly.

To install electro-magnet...
A) Connect magnet wire harness.
B) Install magnet.

Note: Be sure spring washer is in place under magnet.

Step 4: Disconnect magnet wire harness Remove magnet.

MA717600i

To install brake lever...
A) Position brake lever so that it aligns w/ slots in brake pad.
B) Secure lever with two screws.

Note: Be sure roll pins (in brake lever) align with springs.

Rotational Base Brake System - continued

Foot Conrol Inlet / Power Inlet / EMI Filter Board Access

Step 1: Separate upper \& lower base castings.

Step 2: Turn lower base assembly upside down. Remove bottom cover.

To remove foot control inlet...
A) Unscrew lock nut.
B) Remove foot control inlet / harness assembly.

To remove EMI filter board...
A) Tag \& disconnect all wires to board.
B) Remove board from mounting studs.

To remove power inlet...
A) Tag \& disconnect all wires to power inlet.
B) Pry power inlet out of bottom cover.

[^2]
PC Board Cover (models w/ Standard Base)

Removal / Installation

PC Board Cover (models w/ Rotational Base)

Removal / Installation

Caution

Unplug power cord before removing PC board cover.

\square

Equipment Alert

You must perform Step 2 before cover can be completely removed.

Removal
Step 1: Remove two screws, then partially separate cover.

Removal
Step 2: Remove two screws from transformer mtg. plate.

Installation

Step 3: Secure transformer mtg. plate.
Secure cover w/ two screws.

Installation
Step 2: Position transformer mtg. plate so that tab is engaged.

Removal
Step 3: Pull transformer mtg. plate out to disengage tab. Prop mtg. plate up behind two standoffs as shown.

Removal
Step 4: Disconnect wire harnesses from J12 on PC board.

Installation

Step 1: Connect wire harnesses
to J12 on PC board.

MA7940i

Models:	$647(-003 \&-004)$
Serial Numbers:	all

Base Shrouds

Raising (w/bungee cord)

Step 3: Lift shrouds, then attach bungee cord hooks under shrouds on both sides.

Step 2: Stretch bungee cord across top of base column (under seat).

Note: It may be necessary to run Tilt Up function to route bungee cord under seat section.

Bungee Cord

Step 1: Remove bottom screws from inner shrouds.

Models: Serial Numbers:	647 all	

Base Shrouds - continued

Lowering / Removal / Installation

Installation

Step 2: Position outer shrouds.
Secure with screws at both sides.

Lowering / Removal
Step 1: Remove magnetic

Installation
Step 3: Install magnetic cladding.
cladding (3 pcs).

Note: Insert shroud tabs into seat weldment slots.

Equipment Alert
Lower the base before performing Step 2 This will prevent the shrouds from falling when the outer shrouds are removed.

Lowering / Removal
Step 2: Remove screws from outer shrouds only. Pull shrouds outward to disengage tabs.

Installation
Step 1: Position inner shrouds, then secure w/ screws Repeat for middle shrouds.

Note: Be sure shroud tabs stack on top of each other.

Equipment Alert

The middle \& inner shroud sets are different sizes. Be sure to keep the sets together.

Removal
Step 3: Remove screws from inner \& middle shrouds.

Models: Serial Numbers:	647 all	

Upholstery

Removal / Installation

To replace chair arm uphostery...

A) Remove two screws securing bottom cover.
B) Remove four screws securing upholstered pad.
C) Position new upholstered pad, then secure with four screws.
D) Position bottom cover, then secure with two screws

A) Position foot upholstery on mounting board.

To install seat / back uphostery...

A) Raise back section of table approx. 30°.
B) Position front of seat uph. against mounting board.
C) Press seat section down firmly, then lay back section

Foot Extension Covers

Removal / Installation

Models:	647 all	

Foot Extension Covers - continued

Removal / Installation

Mounting Screw
(Side Cover)

Step 2: Remove Covers.

A) Loosen two stop screws and remove debris tray shelf.
B) Pull out foot extension, loosen set screws and remove release levers.
C) Remove six mounting screws from front cover.
D) Remove six mounting screws from side cover.
E) Remove front and side covers.

To install covers...

A) Install side cover and secure with six screws.
B) Snap front cover into position and secure with six screws.
C) Install release levers and tighten set screws.
D) Install debris tray shelf and tighten stop screws.
E) Install foot extension substrate and upholstery.

MA7982i

Models:	647 Serial Numbers:	

\square
Models:
Serial Numbers:

Exploded Views \& Parts Lists

647 (-001 / -002)
Standard Base

Actuators / Limit Switches:
Base ...E-20
Back...-21
Tilt. E-19

Position Sensors.

E-18*
Chair ReceptaclesE-16
Back Section....................................E-5

Seat Section ... 6

Chair Arms.

Column Top Components.
includes: main PCB, power cord, fuses, main transformer, etc.

Base Shrouds.

MA7902i

Models:	$647(-001 /-002)$ Serial Numbers:

* Indicates multiple pages due to a serial number break for the parts illustration.

Always verify model \& serial number

647 (-003 / -004)
 Rotational Base

Actuators / Limit Switches:

Back.	E-
Tilt	E-19

Position Sensors
E-18*
Rotational Base:
Brake Lever / Electro-magnet.

```
Back Section.E-5
```

Seat Section E-6

Chair Arms

E-22

Column Top Components

Rotational Base:
Upper Section.E-13
includes: main PCB, brake switches, main transformer, rotation control PCB, etc.

Models: Serial Numbers:	$647(-003 /-004)$ all

* Indicates multiple pages due to a serial number break for the parts illustration.

Always verify model \& serial number

MA7889i

Models:	$647(-001 /-002)$
Serial Numbers:	all

© Midmark Corporation 2008 SF-1925 [Revised: dd/mo/yr]
E-16

Chair Receptacles		
Item	Description	Qty.
1	Isolation Transformer	1
2	Screw (\#10-24 x 1/2")	1
3	Rubber Washer	4
4	Duplex Receptacle	2
5	Nut (\#6-32)	4
6	Screw (\#10-24 x 3/8")	2
7	Receptacle Plate	2
8	Screw (\#6-32 self tapping)	4

Always verify model \& serial number

Foot Control		
Item	Description	Qty.
1	Foot Control Assembly (incl. items 2 thru 9) a) Programmable b) Non-Programmable	1
2	- Keypad a) Programmable b) Non-Programmable	1
3	- Switch Membrane	1
4	- Retainer	1
5	- Base	1
6	- Cord	1
7	- Base Plate	1
8	- Screw ($3.5 \mathrm{~mm} \times 10 \mathrm{~mm}$)	10
9	- Stem Bumper	7

Always verify model \& serial number

Position Sensors		
Item	Description	Qty.
1	Position Sensor Only Kit (incl. washer, nut, items 2 \& 3)	3
2	- Coupler (small: not used on 647)	1
3	- Coupler (large: Base / Back / Tilt)	1
4	BACK Sensor Kit w/ Bracket (includes items 1 \& 5)	1
5	- Bracket Kit: BACK (includes items 6 \& 7)	1
6	- Bracket	1
7	\cdots Mounting Plate	1
8	Screw (\#10-24 x 1/4")	1
9	Cover (BACK Sensor)	1
10	BASE Sensor Kit w/ Bracket (includes items 1 \& 11)	1
11	- Bracket Kit: BASE (incl. items 12 \& 13)	1
12	- - Mounting Plate	1
13	- • Flange Bushing	2
14	TILT Sensor Kit w/Bracket (includes items 1 \& 15)	1
15	- Bracket Kit: TILT (incl. items 16 \& 17)	1
16	- - Bracket	1
17	- - Mounting Plate	1
18	Cover (TILT Sensor)	1
19	Screw (\#10-24 x 3/8")	3
20	Screw (\#8-32 $\times 1 / 4$)	3
21	Screw (\#8-32 x 3/8")	1
22	Wire Clamp	1

Always verify model \& serial number

Chair Arms		
Item	Description	Qty.
1	LH Chair Arm Assy (includes items 3 \& 4) a) Premium Upholstery b) Premium Uph - Cal 133 c) Ultra-Premium Upholstery d) Ultra- Premium Uph-Cal 133	1
2	RH Chair Arm Assy (includes items 3 \& 4) a) Premium Upholstery b) Premium Uph - Cal 133 c) Ultra-Premium Upholstery d) Ultra- Premium Uph-Cal 133	1
3	- Refer to: Upholstery	Ref
4	- a) RH Chair Arm Assembly (incl. items 5 thru 20) - b) LH Chair Arm Assembly (incl. items 5 thru 20)	1
5	- - Lock Plate	1
6	\cdots - Arm Weldment	1
7	\cdots Clevis Pin	1
8	- \cdot Pivot Handle	1
9	\cdots Retaining Ring	2
10	$\cdots \cdot$ Indexing Plunger	1
11	\cdots Sperical Washer	1
12	$\cdot \cdot$ Nut	1
13	- \cdot Compression Spring	1
14	\cdots Clevis Pin	1
15	\cdots Retainer Clip	1
16	- - a) LH Shaft Weldment (shown) $\cdots b$) RH Shaft Weldment	1
17	- . Screw (\#10-24 x 3/8")	6
18	\cdots - Bottom Cover	1
19	\cdots Flange Bearing	2
20	- Nut (apply Loctite 242)	1

16

1

Midmark Corporation

For contact information, go to:
MIDMARK ${ }^{\circ}$

[^0]: MA7955i

[^1]: © Midmark Corporation 2008 SF-1925

[^2]: PC Board Cover:

 Rotational Base

