

Bio-Based Polyethylene Filament

SKU: FL600PE-BIO

Xtellar Bio-Based PE filament is a bio-based high-density polyethylene (HDPE) filament, derived from raw sugar care, providing a more sustainable alternative to traditional materials available on the market. This eco-friendly formulation, delivers a unique combination of sustainability, high elongation, light weighting, and moisture resistance for Bowden and direct drive 3D printing systems. This bio-based PE expands the availability of sustainable materials for use in 3D printing applications such as; consumer, packaging, and industrial markets.

Recommended Print Settings

Parameter	Units	Range
Extruder Temperature	°C	220 - 250
*Recommended Bed Temperature (first layer)/ Substrate	°C / Type	20-40 (90) / Magigoo PPGF adhesion solution stick
**Alternate Bed Temperature (first layer)/ Substrate	°C / Type	20 - 40 (90) / Multi-purpose polyolefin adhesive
Printing Speed	mm/s	20 - 60
Fan Speed	%	50 - 100
Extrusion Multiplier	_	0.90 - 1.10
Overlap Percentage	%	20 - 40
Brim	Layers	≥10
Raft Air Gap	mm	0.1

Printed Part Properties

Parameter	Method	Units	0.95 60
Density	ASTM D 792	g/cm³ Shore D	
Hardness	ASTM D 2240		
Tensile Strength at Break*	ASTM D 638	MPa	12
Tensile Elongation at Break*	ASTM D 638	%	574
Young's Modulus*	ASTM D 638	MPa	717
Flexural Modulus – Chord Modulus	ASTM D790	MPa	440
Vicat Softening Temperature (at 10 N)	ASTM D 648	°C	110.5
Deflection Temperature (at 0.455 MPa)	ASTM D 1525	°C	56

Notes

- 1. Recommended process conditions and printed part properties may be changed at any moment without previous communication from Xtellar.
- 2. Printed part properties obtained using test specimens printed in X-Y direction under the following conditions: printing temperature 230°C, bed temperature 20°C (90°C first layer), print speed 20 mm/s, 100% of lines infill, 0 perimeter layers, 0.15 mm layer height, 0.4 mm brass nozzle.
- 3. Traditional bed adhesive solutions used for PLA & ABS (such as blue tape or hair spray) will not properly adhere PP, PE, or EVA to the build plate.
- 4. This resin does not contain the substance Bisphenol A (BPA, CAS: 80-05-7) in its composition.
- 5. For information on about safety, handling, individual protection, first aids and waste disposal, please see SDS.In case of questions regarding utilization or regulatory information, please contact our technical assistance area.