

SKU: FL600EVA-BIO

Bio-Based Flexible EVA Filament

This is the industries first bio-based ethylene vinyl acetate (EVA) 3D filament, derived from raw sugar cane. This formulation provides a sustainable alternative to some traditional flexible TPE & TPU materials available on the market. This low carbon footprint formulation delivers a unique combination of sustainability, flexibility, ductility, lightweighting, and moisture resistance. Xtellar bio-based EVA filament expands the availability of sustainable materials for use in 3D printing applications such as: consumer, packaging, and industrial markets.

.

Recommended Print Settings

Parameter	Units	Range
Extruder Temperature	°C	220 - 250
*Recommended Bed Temperature (first layer) / Substrate	°C / Type	20-40 (90) / Polyolefin or flexible materials adhesion solution stick
**Alternate Bed Temperature (first layer) / Substrate	°C / Type	20 - 40 (90) / Multi-purpose polyolefin adhesive
Printing Speed	mm/s	20 - 40
Fan Speed	%	50 - 100
Extrusion Multiplier	_	0.90 - 1.10
Overlap Percentage	%	20 - 40
Retraction distance	mm	1 - 10
Retraction speed	mm/s	10 - 40

Printed Part Properties

Parameter	Method	Units	Value	
Density	ASTM D 792	g/cm³	0.94	
Hardness	ASTM D 2240	Shore A	94	
Tensile Strength at Break*	ASTM D 638	MPa	9.6	
Tensile Elongation at Break*	ASTM D 638	%	560	
Young's Modulus*	ASTM D 638	MPa	78	
Flexural Modulus – Chord Modulus	ASTM D790	MPa	130	
Vicat Softening Temperature (at 10 N)	ASTM D 1525	°C	67	

Notes

- 1. Recommended process conditions and printed part properties may be changed at any moment without previous communication from Xtellar.
- 2. Printed part properties obtained using test specimens printed in X-Y direction under the following conditions: printing temperature 230°C, bed temperature 20°C (90°C first layer), print speed 20 mm/s, 100% of lines infill, 0 perimeter layers, 0.15 mm layer height, 0.4 mm brass nozzle.
- 3. Traditional bed adhesive solutions used for PLA & ABS (such as blue tape or hair spray) will not properly adhere PP, PE, or EVA to the build plate.
- 4. This resin does not contain the substance Bisphenol A (BPA, CAS: 80-05-7) in its composition.
- 5. For information on about safety, handling, individual protection, first aids and waste disposal, please see SDS.In case of questions regarding utilization or regulatory information, please contact our technical assistance area.