

테크니컬 모드 사용 설명서

Powerful • Simple • Reliable

목차

목차
1. 소개
2. 기본 작동
3.1. 기본 다이빙 설정 9 3.1. 기본 다이빙 설정 9 3.2. 메인 화면 레이아웃 10 3.3. 상세 설명 11 3.4. 정보 화면 16 3.5. 정보 화면 설명 17 3.6. 미니 디스플레이 23 3.7. 알림 23 3.8. 기본 알림 목록 25 3.9. 감압 정지 28
4. 감압 및 압력경사도 인자
5. 다이빙예시
6. 특수 다이빙 모드 38 6.1. 게이지 모드 38 6.2. 반폐쇄식 모드 39 6.3. 베일아웃 재호흡기 모드 39 7 나칭바 40
8. 공기 통합(AI) 41 8.1. AI란? 41 8.2. 기본 AI 설정 42

8.3. AI 디스플레이 8.4. 사이드마운트 AI 8.5. 여러 대의 트랜스미터 사용하기 8.6. SAC 계산 8.7. GTR 계산 8.8. 트랜스미터 연결 문제	. 45 . 47 . 48 . 49 . 50 . 51
9. 메뉴	52
9.1. 메뉴 구조 9.2. 메인 메뉴 설명 9.3. 다이빙 설정 9.4. 다이빙 로그	. 52 . 55 . 61 . 68
10. 시스템 설정 참고 사항	70
10.1.모드 설정 10.2.감안 설정	.71 .72
10.3.AI 설정	. 73
10.4.중앙 행 10.5.OC 기체(BO 기체)	.75 .75
10.6.CC 기체	. 75
10.7.02 설정 10.8.설정값 자동 변경	.76 .77
10.9.경보 설정	. 77
10.11.나침반	. 78 . 78
10.12.시스템 설정 10.13.고급 설정	. 79 . 80
11. 펌웨어 업데이트 및 로그 다운로드	83
11.1. Shearwater Cloud Desktop	83
	85
12. 매디디 교세아기 12.1.배터리 교체 시 동작	80 87.
13. 보관 및 유지보수	88
14. 서비스	88
15. 용어집	88
16. Petrel 3 사양	88
17. 규제 정보	89
18. 문의	91

아위험

이 컴퓨터는 감압 정지 요구 사항을 계산할 수 있습니다. 이러한 계산은 실제 생리학적 감압 요구 사항의 추정값입니다. 단계별 감압이 필요한 다이빙은 무정지 한계 내에서 머무르는 다이빙보다 훨씬 위험합니다.

재호흡기 및/또는 다이빙 혼합 기체 다이빙 및/또는 단계별 감압 다이빙 실행 및/또는 머리 위가 가려진 환경에서 하는 다이빙은 스쿠버 다이빙과 관련된 위험을 크게 증가시킵니다.

이 활동은 생명을 위협할 수 있습니다.

<u></u> ! 경고

이 컴퓨터에는 버그가 있습니다. 모든 버그를 찾을 수는 없으므로 버그는 항시 존재합니다. 이 컴퓨터에서는 전혀 생각하지 않았거나 계획한 적 없는 작업이 일어날 수 있습니다. 생명이 달린 활동이므로 단 한 개의 정보 장치만 사용하지 마십시오. 보조 컴퓨터나 테이블을 사용하세요. 위험도가 높은 다이빙을 하려면 적절한 훈련을 받은 후 천천히 경험을 쌓은 뒤 시도하십시오.

이 컴퓨터는 고장이 나게 되어 있습니다. 고장은 확률의 문제가 아니라 시기의 문제입니다. 따라서 장치에 과도하게 의존해서는 안 됩니다. 고장이 났을 때의 대처 방법을 항상 계획해 두어야 합니다. 자동 시스템은 지식과 교육을 대체할 수 없습니다.

어떤 기술도 생명을 보장하지 않습니다. 지식, 기술 및 연습만이 최선의 보호책입니다(물론 다이빙을 하지 않는 경우는 제외).

설명서 내 표기 설명

다음 표기는 중요 정보를 나타냅니다.

정보

정보 상자는 Petrel 3을 최대로 활용하는 데 유용한 팁을 나타냅니다.

주의

주의 상자는 다이빙 컴퓨터 작동에 관한 중요한 지침을 나타냅니다.

🕖 경고

경고 상자는 개인 안전에 영향을 줄 수 있는 중요한 정보를 나타냅니다.

1. 소개

Shearwater Petrel 3는 고급 테크니컬 다이빙 컴퓨터입니다.

이 설명서를 꼼꼼히 읽으시기 바랍니다. 다이버의 안전은 다이브 컴퓨터 디스플레이를 읽고 이해하는 능력에 달려있습니다.

다이빙에는 리스크가 수반되며, 이 리스크를 관리하는 최선의 방법은 교육입니다.

이 설명서로 필요한 다이빙 교육을 대신하려고 해서는 안 되며, 절대 자신의 훈련 수준을 넘어서는 다이빙을 하지 마세요. 무지로 인해 자신을 위험에 처하게 할 수 있습니다.

특징

- 고대비 2.6인치 AMOLED 디스플레이
- 견고한 컴퓨터 구조
- 티타늄 베젤
- 자가 교체 배터리
- 강력한 진동 경보
- 프로그래밍 가능한 수심 샘플링 속도
- 130msw로 보정된 수심 센서
- 300msw 이상의 수심 센서 기능
- 압착 압력 등급 290MSW
- 테크니컬 다이빙 모드에서 5가지 맞춤 기체 설정 가능
- 산소, 질소 및 헬륨 조합(공기, 나이트록스, 트라이믹스)
- 완전 감압 및 CCR 지원
- 1, 2, 3 산소 셀의 외부 PPO2 모니터링(PO2 모니터링 모델 한정)
- 베일아웃 재호흡기 모드(PO2 모니터링 모델 한정)
- Bühlmann ZHL-16C 및 경사도 인자 기준
- VPM-B 및 DCIEM 감압 모델 옵션
- 감압 정지 위반 시에도 조작 가능
- CNS 추적
- 기체 밀도 추적
- 빠른 NDL 및 완전 감압 플래너 내장
- 최대 4개 실린더로 동시 무선 압력 모니터링
- 사이드마운트 다이빙 기능
- 기울기 보정 디지털 나침반과 다양한 디스플레이 옵션
- 블루투스로 Shearwater Cloud에 다이빙 로그 업로드
- 무료 펌웨어 업데이트

1.1. 설명서 주의 사항

이 설명서의 작동법은 Petrel 3 다이브 컴퓨터의 테크니컬 모드에서만 사용할 수 있습니다.

이 설명서에는 보다 편리한 탐색을 위해 섹션 간 상호 참조 기능이 포함되어 있습니다.

<u>밑줄이 그어진 텍스트</u>는 다른 섹션으로의 링크를 나타냅니다.

Petrel 3의 설정을 변경할 시 일어나는 결과에 대한 이해 없이 설정을 변경하지 마세요. 확실하지 않을 때는 설명서의 해당 섹션을 참조하세요.

이 설명서는 필요한 교육을 대신하지 않습니다.

· 펌웨어 버전: V91

이 설명서는 펌웨어 버전 V91에 해당합니다.

이 릴리스 이후에 기능이 변경되어 이 설명서에 포함되지 않을 수 있습니다.

<u>마지막 릴리스 이후의 모든 변경 사항을 확인하려면</u> <u>Shearwater.com의 릴리스 노트를 참조하세요.</u>

1.2. 설명서에서 다루는 모델

이 설명서의 작동법은 다음과 같은 Petrel 3 모델에서만 사용할 수 있습니다.

• 단독 모델	SA
• Fischer 커넥터 모델	FC
• 아날로그 케이블 글랜드 모델	ACG
• DiveCAN 재호흡기 모니터 모델	DCM

이 설명서의 일부 섹션은 Petrel 3의 특정 모델에만 적용됩니다. 장치에 해당하는 섹션을 쉽게 확인하려면 설명서에서 해당 모델의 아이콘을 찾아보세요. 모델 아이콘이 없는 섹션은 모든 Petrel 3 모델에 적용됩니다.

1.3. 설명서에서 다루는 모드

이 설명서의 작동법은 다음과 같은 Petrel 3 다이브 컴퓨터의 테크니컬 모드에서만 사용할 수 있습니다.

- 개방식 테크니컬(OC Tec)
- 폐쇄식/베일 아웃(CC/BO)
- 반폐쇄식/베일 아웃(SC/BO)
- 게이지
- PPO2

<u>8페이지의 다이빙 모드 차별화</u>를 읽어보세요.

Shearwater Petrel 3에는 또한 개방식 레크리에이션 다이빙을 위해 설계된 3가지 모드가 있습니다.

레크리에이션 다이빙 모드에서의 자세한 사용법은 <u>Petrel 3</u> <u>레크리에이션 모드 설명서</u>를 참조하세요.

Petrel 3의 일부 기능은 특정 다이빙 모드에서만 이용할 수 있습니다. 별도의 표시가 있지 않으면 설명서에 포함된 기능은 모든 다이빙 모드에서 이용 가능합니다.

자세한 내용은 71페이지의 모드 설정 섹션을 참조하세요.

2. 기본 작동

2.1. 켜기

Petrel 3을 켜려면 두 버튼을 동시에 누릅니다.

자동 켜기

Petrel 3은 물속으로 들어가면 자동으로 켜집니다. 이 기능은 물의 존재 여부가 아니라 압력 증가에 따른 것입니다. 자동 켜기가 활성화되면 Petrel 3은 최근에 사용한 다이빙 모드가 됩니다.

자동 켜기 기능에 의존하지 마세요

이 기능은 Petrel 3 켜기를 잊어버릴 때를 대비한 보조 수단입니다.

컴퓨터가 제대로 작동하는지 확인하고 배터리 상태 및 설정을 재점검할 수 있도록 다이빙하기 전에 컴퓨터를 수동으로 켤 것을 권장합니다.

Petrel 3은 절대 압력이 1,100mbar(mbar) 이상일 때 자동으로 켜며 다이빙 모드로 들어갑니다.

참고로 일반적인 해수면 압력은 1,013mbar이고 압력 1mbar는 수면에서 약 1cm(0.4")에 해당합니다. 따라서 해수면에 있을 때 Petrel 3은 자동으로 켜지고 약 0.9m(3ft) 의 수심에서 다이빙 모드가 됩니다.

고도가 높으면 Petrel 3의 자동 켜기는 수심이 더 깊어야 작동합니다. 예를 들어, 고도 2,000m(6,500ft)에서 대기압은 약 800mbar밖에 되지 않습니다. 따라서 Petrel 3이 이 고도에서 1,100mbar의 절대 압력에 도달하려면 300mbar의 수중에 잠겨야 합니다. 즉, 해발 2,000m에서는 수심이 약 3m(10ft)일 때 자동 켜기가 작동합니다.

2.2. 버튼

MENU

2개의 티타늄 피에조 전자 버튼은 설정 변경 및 메뉴 보기에 사용합니다.

Petrel 3의 모든 작업은 버튼을 누르는 것만으로 조작할 수 있습니다.

아래의 모든 버튼 규칙을 기억할 필요는 없습니다. 버튼 힌트를 이용하면 Petrel 3을 쉽게 사용할 수 있습니다.

MENU 버튼(왼쪽)

메인 화면에서	메뉴를 표시합니다
메뉴에서	다음 메뉴 항목으로 이동합니다
설정 편집	설정 값을 변경합니다

SELECT 버튼(왼쪽)

메인 화면에서	정보 화면을 훑습니다
메뉴에서	명령을 수행하거나 편집을 시작합니다
설정 편집	설정 값을 저장합니다

양쪽 버튼

Petrel 3가 꺼져 있을 때 MENU와 SELECT를 동시에 누르면 Petrel 3가 켜집니다. 다른 작업을 할 때는 두 버튼을 동시에 누를 필요가 없습니다.

버튼 힌트

메뉴에서 버튼 힌트는 각 버튼의 기능을 나타냅니다.

위의 예시 힌트가 의미하는 바는 다음과 같습니다.

- MENU(메뉴)를 사용하여 밝기 값을 변경합니다
- SELECT(선택)를 사용하여 현재 값을 저장합니다

2.3. 모드 간 변경

기본적으로 Petrel 3는 3 GasNx 모드로 설정되어 있습니다.

레크리에이션 모드 레이아웃

Mode Set	υp
Mode	OC Tec
Salinity	EN13319
Next	Edit

모드 설정 메뉴

OC Tec 모드

Ρ	레크리에이션 모드는 레이아웃 글꼴 크기가 큽니다.
N ₂	Petrel 3에서 레크리에이션 모드를 사용하는 방법은 <u>Petrel 3 레크리에이션</u> 모드 설명서를 참조하세요.

이 설명서는 테크니컬 다이빙 모드에서의 작동법만 다룹니다. 모드 설정 메뉴에서 이 모드 중 하나로 변경합니다. <u>자세한 내용은 71</u> 페이지를 참조하세요.

테크니컬 모드는 다른 모드보다 화면에 표시되는 정보가 많습니다.

회로 모드는 테크니컬 다이빙 모드의 왼쪽 하단에 표시되어 있습니다.

2.4. 다이빙 모드 차별화

각 다이빙 모드는 특정 다이빙 유형에 가장 잘 맞도록 설계되었습니다. Petrel 3를 최대한 활용하려면 올바른 모드를 사용하세요.

모드	대상 모델	설명
공기	SA FC ACG	레크리에이션용, 공기만 사용, 무감압 다이빙 활동용입니다. • 공기(산소 21%)만 사용, 수중 전환 불가
나이트록스	SA FC ACG	레크리에이션용, 나이트록스, 무감압 다이빙 활동용입니다. • 단일 기체 나이트록스 최대 40% 산소 • 수중 기체 전환 불가
3GasNx	SA FC ACG	계획적 감압과 관련된 다이빙을 포함한 입문 수준의 테크니컬 다이빙 활동용입니다. • 프로그래밍 가능한 3가지 기체 • 기체 변경 지원 • 나이트록스 최대 100%
OC Tec	SA FC ACG	개방식 테크니컬 계획적 감압을 포함한 개방식 테크니컬 다이빙 활동용입니다. • 완전 트라이믹스 • 안전 정지 없음

모드	대상 모델	설명
CC/BO	SA FC ACG DCM	개방식 베일아웃을 사용하는 폐쇄식입니다. 폐쇄식 재호흡기와 함께 사용하는 용입니다. • 폐쇄식에서 개방식(BO) 작동 모드로 빠르게 변경합니다. • 일부 모델만 외부 PPO2 모니터링을 사용합니다.
SC/BO	FC ACG	개방식 베일아웃을 사용하는 반폐쇄식입니다. 반폐쇄식 재호흡기와 함께 사용하는 용입니다. • 감압은 SC 모드와 CC 모드에서 각각 다르게 계산됩니다. 그 이유는 얕은 수심에서 예상되는 PPO2가 다르기 때문입니다. • 외부 PPO2 모니터링만 사용할 수 있습니다.
게이지	SA FC ACG	전용 레이아웃으로 간단한 수심과 시간을 표시합니다. <u>자세한 내용은</u> <u>38페이지를 참조하세요</u> . • 조직 추적 없음 • 감압 정보 없음
PPO2	FC ACG DCM	게이지와 비슷하지만 PPO2 디스플레이가 있습니다. 무감압.

3.1. 기본 다이빙 설정

Petrel 3은 레크리에이션 다이빙용으로 사전 구성되어 있습니다. 기본 다이빙 모드는 3 기체 나이트록스 모드(3 GasNx)입니다.

빠른 이해를 위해 기본 다이빙 디스플레이를 아래에 표시했습니다.

이 설명서는 테크니컬 다이빙 모드 전용입니다. 위의 기본 디스플레이의 대다수 기능은 이 설명서에서 다루는 다이빙 모드에 적용됩니다.

공기, 나이트록스 또는 3 GasNx 모드를 사용하는 방법은 Petrel 3 레크리에이션 모드 설명서</u>를 참조하세요.

PETREL·3 테크니컬 모드 사용 설명서

3.2. 메인 화면 레이아웃

메인 화면에는 테크니컬 다이빙과 관련된 가장 중요한 정보가 표시됩니다.

개방식

OC Tec 모드

모든 모드에서 상단 행에는 중요한 수심, 시간 및 감압 정보가 포함되어 있습니다. 하단 행에는 모드 표시, 활성 기체, 무감압 한계 및 수면까지 걸리는 시간이 표시됩니다.

Select(오른쪽) 버튼을 누르면 하단 행의 추가 데이터를 스크롤할 수 있고, 일시적으로 해당 정보를 가릴 수 있습니다. <u>자세한 내용은 16페이지의 정보 화면 섹션을</u> <u>참조하세요.</u>

사용자는 OC Tec 모드에서 중앙 행 전체에 자신이 가장 중요하다고 생각하는 데이터를 표시하도록 맞춤 구성할 수 있습니다.

중앙 행 구성 옵션은 67페이지를 참조하세요.

내부 설정값이 설정된 폐쇄식

모든 모델은 CC/BO 모드에서 사용자가 정의한 "내부" 설정값으로 작동할 수 있습니다. 이 모드에서는 왼쪽 및 오른쪽 위치를 구성할 수 있지만, 현재 설정값은 항상 중앙 위치에 표시되며 제거할 수 없습니다.

외부 설정값이 설정된 폐쇄식

ACG FC

외부 센서 모니터링 기능이 있는 모델은 CC/BO 모드에서 외부 PPO2 모니터링을 함께 사용해 작동할 수 있습니다. 이 모드에서 중앙 행은 셀 PPO2 값을 표시할 우선 순위를 정합니다. 3셀 모드로 작동할 때는 중앙 행에 사용자 지정 정보를 사용할 수 있는 공간이 없습니다.

테크니컬 모드 사용 PETREL·3 설명서

3.3. 상세 설명

상단 행

상단 행에는 수심, 다이빙 시간, 상승 속도, 감압 정보 및 배터리 상태가 표시됩니다.

수심

피트 또는 미터 단위로 표시됩니다.

피트에서는 수심이 소수점 없이 표시됩니다. 미터에서는 수심이 소수점 첫째 자리(최대 99.9m)까지 표시됩니다.

주의: 수심에 0이 빨간색으로 깜박이거나, 수면에 있는데 수심이 표시되면 수심 센서에 정비가 필요하다는 뜻입니다.

상승 속도 디스플레이

현재 얼마나 빨리 상승하고 있는지 나타냅니다.

화살표 1개는 상승 속도가 분당 3m(mpm) 또는 분당 10ft(fpm)에 해당합니다.

초록색 9mpm / 30fpm(화살표 1~3개) 미만

 \sim

노란색 9mpm / 30fpm 이상 18mpm/60fpm 미만 (화살표 4~5개)

빨간색 깜박임

18mpm / 60fpm 이상(화살표 6개) 감압 계산은 10mpm(33fpm)의 상승 속도로 가정합니다.

다이빙 시간

상단 행의 왼쪽에 있는 첫 번째 "시간" 항목은 현재 다이빙 길이(분)입니다.

초는 "시간" 아래의 막대 그림으로 표시됩니다. 단어의 각 문자에 밑줄이 그어지는 데는 15초가 걸립니다. 다이빙 중이 아닐 때는 이 초 막대가 표시되지 않습니다.

감압 정지 수심 및 시간

27m에서 2분 동안 정지합니다

상단 행의 세 번째 항목인 "정지"는 다음 감압 정지 수심을 현재 단위(피트 또는 미터)로 나타냅니다. 이 수심은 상승 가능한 가장 얕은 수심입니다. 상단 행의 오른쪽에 있는 마지막 항목인 "시간"은 정지 상태를 얼마나 유지하고 있는지를 분 단위로 나타냅니다.

감압 정지 위반

현재 정지 수심보다 더 얕은 수심으로 상승하면 감압 정보가 빨간색으로 깜박입니다.

기본적으로 Petrel 3는 3m(10ft)의 마지막 감압 정지 수심을 사용합니다. 원하는 경우에는 마지막 감압 정지를 더 깊게 할 수도 있습니다. 감압 계산은 계속 정확하게 유지됩니다. 만약 이렇게 한다면 호흡 기체에 따라 수면까지 걸리는 예상 시간이 실제보다 짧을 수 있습니다. 기체 배출이 알고리즘이 예상하는 것보다 늦게 이루어질 수 있기 때문입니다. 마지막 정지를 6m(20ft)로 설정하는 옵션도 있습니다.

수면 위에 있는 경우 감압 정지 수심 및 시간이 수면 휴식 시간 디스플레이로 바뀌면서 마지막 다이빙을 종료한 후 경과한 시간과 분을 표시합니다.

2시간 및 15분의 수면 휴식 시간

4일 이상이면 수면 간격이 일 단위로 표시됩니다.

감압 조직이 초기화되면 수면 휴식 시간도 초기화됩니다. 자세한 내용은 87페이지의 감압 조직 부하섹션을 참조하세요.

감압 완료 카운터

감압을 지우면 정지 수심 및 시간이 0부터 시작하는 카운터로 바뀝니다.

배터리 아이콘

기본적으로 배터리 아이콘은 수면에 있을 때 표시되고 다이빙할 때는 사라집니다. 배터리가 낮거나 부족한 경우 다이빙할 때 배터리 아이콘이 나타납니다.

중앙 행

중앙 행 레이아웃은 현재 모드에 따라 다릅니다.

OC Tec 모드에서는 중앙 행 정보를 완전히 맞춤 설정할 수 있습니다. 세 가지 위치를 구성할 수 있으며, 각 위치는 서로 다르게 설정할 수 있습니다.

데이터 옵션 목록은 다음 페이지에 표시됩니다. 중앙 행 설정 방법은 <u>75페이지</u>에서 확인할 수 있습니다.

중앙 행의 가운데 위치는 기본적으로 기체 PPO2를 표시합니다. 왼쪽 및 오른쪽 슬롯보다 약간 좁기 때문에 데이터 옵션 선택 폭이 작습니다.

각 화면 요소에 대한 자세한 설명은 <u>17페이지의 정보 화면</u> 설명을 참조하세요.

CC/BO 모드에서는 내부 PPO2 설정값을 사용할 때 중앙

슬롯을 구성할 수 없습니다. 여기에는 항상 현재 선택한 재호흡기 설정값이 제목 텍스트 없이 표시됩니다. 오른쪽 및 왼쪽 슬롯은 맞춤 설정이 가능합니다.

내부 설정값을 사용할 때 CC/BO 모드에서 왼쪽 및 오른쪽 위치를 구성할 수 있습니다.

CC/BO 모드에서 외부 PPO2 모니터링을 사용할 때 셀 PPO2 값이 중앙 행 자리에 표시됩니다.

CC/BO 3 센서 외부 PPO2 모드에서는 모든 중앙 행 위치에 PPO2 정보가 표시됩니다

일반적인 3셀 모드 외에 다이브 컴퓨터는 단일 또는 이중 셀 모드로 작동할 수도 있습니다. 사용하지 않는 위치는 이러한 작동 모드에서 맞춤 설정할 수 있습니다. <u>자세한 내용은 57</u> <u>페이지를 참조하세요</u>.

수면에서 내부 PPO2 설정값과 외부 PPO2 모니터링 모드를 바꾸려면 모드 설정 메뉴(<u>71페이지</u>) 또는 다이빙 설정 메뉴 (<u>61페이지</u>)에서 할 수 있습니다.

외부 센서를 사용하고 OC에 베일아웃 중일 때는 중앙 행이 외부 측정 PPO2를 계속 표시합니다.

참고로 모든 PPO2 장치는 절대 대기입니다. (1ata=1013mbar).

기본 PPO2 한계

CC 모드에서 PPO2는 0.40 이하 또는 1.6 이상일 때 **빨간색으로 깜박입니다**.

OC Tech 모드에서 PPO2는 0.19 미만 또는 1.65 이상일 때 **빨간색으로 깜박입니다**.

이 한계값은 고급 설정2 메뉴에서 설정할 수 있습니다. <u>자세한 내용은 81페이지를 참조하세요</u>

홈 화면 구성 옵션

옵션	정보 디스플레이	옵션	정보 디스플레이
PPO2	PP02 1.15	시계	12:58
CNS %		타이머	TIMER 0:58
MOD	^{MOD} 57"³	다이빙 종료 시간	1:31
기체 밀도	DENSITY	속도	RATE + 43 ^{ft} /min
GF99	GF99 15%	온도	temp 18∘c
수면 GF	SurGF 44%	나침반	319°
상승 한계	CEIL 17	최대 수심	MAX 57 [.] °
@+5	^{@+5} 20	평균 수심	AVG 21. ³
Δ+5	∆+5 +8	잔여 스택 시간	Stack 2:55
수면까지 걸리는 시간	^{TTS} 15	탱크 압력	175∦
희석 기체 PPO2	DilP02 .99	수면 공기 소비량	SAC T1 1.5 Bar min
FiO2	F102 .32	잔여 기체 시간	GTR T1
미니 디스플레이	∆+5 -4 GF9937% SfGF 180	잔여 여분 시간	RTR T1 16
미니 디스플레이 좌우의 맞춤형 슬롯의 미니 디스플레이는 각각 3개의			

데이터를 표시할 수 있습니다. 자세한 내용은 23페이지를

참조하세요.

GF9937

GF

하단 행

테크니컬 다이빙 모드의 하단 행에는 현재 회로 모드, 활성 기체, NDL(무감압 한계) 및 TTS(수면까지 걸리는 시간)가 표시됩니다.

현재 회로 모드

활성 호흡 모드 구성이 하단 행의 맨 왼쪽에 표시됩니다. 옵션은 다음과 같습니다.

CC = 폐쇄식

B() BO = 베일아웃

(노란색으로 표시되며 베일아웃 상태를 나타냅니다.)

활성 기체

현재 활성 기체는 산소 및 헬륨 비율로 표시됩니다. 나머지 비율은 질소로 간주됩니다.

공기: 21% O2 79% N2

10% 02

50% He

79% N2

.

<mark>21/UU</mark> 더 나은 감압 기체 사용

가능

개방식 모드에서는 호흡 기체의 농도입니다. 폐쇄식 모드에서는 활성 희석 기체입니다.

더 나은 기체가 있으면 활성 기체가 노란색으로 표시됩니다. 다이빙 시 사용할 기체만 켜야 합니다.

무감압 한계(NDL)

현재 수심에서 필수 감압 정지까지 남은 시간(분)입니다. NDL이 NDL 한계(기본값: 5분)보다 작을 경우 **노란색**으로 표시됩니다.

NDL 대체 옵션

NDL이 0에 도달하면(예: 감압 정지 필요), 이 공간을 최대한 활용하기 위해 NDL 디스플레이를 몇 가지 맞춤 설정 옵션으로 대체할 수 있습니다. 자세한 내용은 78페이지를 참조하세요. 미니 옵션은 15페이지에 자세히 설명되어 있습니다.

NDL 대체 옵션:

- 상승 한계
- @+5
- · 델타+5
- GF99
- SurGF
- ・미니

수면까지 걸리는 시간(TTS)

수면까지 걸리는 시간(TTS)을 분 단위로 나타낸 것입니다. 이 시간은 상승을 비롯한 모든 필수 감압 정지 등 지금부터 수면까지 걸리는 시간입니다.

중요!

감압 정지, NDL, 수면까지 걸리는 시간을 포함한 모든 감압 정보는 다음과 같은 가정에 기반한 예측값입니다.

- 10mpm / 33fpm의 상승 속도
- 감압 정지가 이루어짐
- 모든 프로그래밍된 기체를 적절하게 사용함

<u> 자세한 내용은 30페이지의 감압 정보 정확도</u> <u>섹션을 참조하세요.</u>

PETREL·3 테크니컬 모드 사용 설명서

하단 행도 추가 정보를 표시하는 데 사용됩니다.

다이빙 중에는 하단 행만 바뀌므로 상단 행과 중앙 행에 있는 중요한 정보는 항상 확인할 수 있습니다.

하단 행에 표시 가능한 추가 정보는 다음과 같습니다.

정보 화면:

추가 다이빙 정보를 표시합니다.

SELECT(오른쪽 버튼) 를 눌러 정보 화면을 스크롤합니다.

메뉴:

설정을 변경할 수 있습니다. MENU(왼쪽 버튼)를 눌러 메뉴로 들어갑니다.

경고:

중요한 경보를 제공합니다. 경고를 지우려면 아무 버튼을 누릅니다.

정보 화면 예시

미니 NDL 대체 디스플레이

미니 NDL 대체 디스플레이 옵션은 하단 행의 오른쪽을 재구성하여 두 개의 추가 맞춤 설정 정보를 표시합니다.

미니 NDL 대체 디스플레이는 시스템 설정 > <u>72페이지의 감압</u> <u>설정</u>에서 구성할 수 있습니다.

미니 옵션을 선택하면 선택한 사용자 지정 정보가 항상 표시됩니다. 이는 NDL이 0 인 경우에만 나타나는 다른 NDL 대체 디스플레이 옵션과 다릅니다.

대체 디스플레이를 사용 중일 때 TTS는 항상 이 미니 디스플레이의 첫 번째 행 옵션으로 고정되며 변경할 수 없습니다. NDL은 감압 의무가 없을 때 상단 행의 감압 정지 및 시간 정보 섹션으로 이동합니다.

NDL 대체 미니 디스플레이 모습

NDL 대체 미니 디스플레이 설정 메뉴

3.4. 정보 화면

정보 화면은 메인 화면보다 더 많은 정보를 제공합니다.

메인 화면에서 SELECT(오른쪽) 버튼을 누르면 정보 화면이 차례로 나타납니다.

모든 정보 화면을 확인한 후 다시 SELECT 버튼을 누르면 메인 화면으로 돌아갑니다.

정보 화면에서 10초가 지나면 자동으로 홈 화면으로 돌아갑니다. 이로써 활성 기체 정보가 장시간 표시되지 않는 일을 방지할 수 있습니다.

나침반, 조직 및 AI 조직 정보 화면은 시간이 지나도 자동으로 꺼지지 않습니다.

MENU(왼쪽) 버튼을 누르면 언제든지 홈 화면으로 돌아갈 수 있습니다.

이 화면들은 대체로 Petrel 3 디스플레이에서 공통적으로 볼 수 있으나, 정보 화면의 상세 내용은 모드마다 다릅니다. 예를 들어, 게이지 모드에서는 감압 관련 정보 화면을 사용할 수 없습니다.

다음 섹션에서는 정보 화면에 표시되는 데이터 요소에 대해 자세히 설명합니다.

Ŧ

3.5. 정보 화면 설명

이 섹션에서는 모든 정보 화면 및 맞춤 설정 화면 요소에 대해 자세히 설명합니다.

마지막 다이빙 정보

마지막 다이빙의 최대 수심과 다이빙 시간입니다. 수면에서만 사용할 수 있습니다.

공기 통합(AI)

AI 기능이 켜져 있는 경우에만 사용할 수 있습니다. AI 정보 행의 내용은 현재 설정에 맞게 자동으로 조절됩니다. 다음 예시를 참고하세요.

175 Å	Τ1
$\begin{array}{c c} \text{T1} & \text{GTR} & \text{T1} & \text{SAC} & \text{T1} \\ \hline 175 \text{\AA} & 37 & 1.5 \frac{\text{Bar}}{\text{min}} \end{array}$	T1 및 GTR/SAC
T1 T2 175 Å 163 Å	T1 및 T2
T1 GTR 45 T2 T2 T75 & SM 1.5 163 & 163	T1, T2 및 GTR/SAC
T1 T2 T2 T3 197 175 Å 163 Å T4 203	T1, T2, T3 및 T4
시 기느 하게 미 디스프레이에 과하 지	네하내요으 /1

Al 기능, 한계 및 디스플레이에 관한 자세한 내용은 <u>41</u> <u>페이지의 공기 통합(Al) 섹션</u>을 참조하세요. 나침반

표시한 진행 방향은 초록색으로, 역진행 방향은 빨간색으로 표시됩니다. 코스를 5 °이상 벗어나면 초록색 화살표가 표시 방향을 가리킵니다.

나침반 정보 행은 시간이 지나도 꺼지지 않으며 나침반 기능이 켜져 있을 때만 사용할 수 있습니다.

<u>자세한 내용은 40페이지의 나침반 섹션을 참조하세요.</u>

밀리볼트 **FC** ACG

외부 PPO2 셀의 원시 밀리볼트(millivolt) 출력을 표시합니다. 이 정보는 시간에 따른 O2 셀 출력 동작을 이해하는 데 사용되는 중요한 정보입니다.

최대 수심

현재 다이빙의 최대 수심입니다. 다이빙을 하지 않을 때는 마지막 다이빙의 최대 수심을 표시합니다.

현재 다이빙의 평균 수심을 표시하고, 초당 한 번씩 업데이트됩니다. 다이빙을 하지 않을 때는 마지막 다이빙의 평균 수심을 표시합니다.

평균 대기

절대 대기로 측정한 현재 다이빙의 평균 수심입니다(예: 해수면 기준 값 1.0). 다이빙을 하지 않을 때는 마지막 다이빙의 평균을 표시합니다.

온도

디스플레이 설정에서 구성한 현재 온도(화씨 또는 섭씨)입니다.

최대 작동 수심(MOD)

맞춤 설정 디스플레이로만 사용할 수 있습니다. OC 모드에서 최대 작동 수심 (MOD)은 현재 호흡 기체에서 최대로 허용되는 수심으로, PPO2 한계로 결정됩니다.

CC 모드에서 MOD는 희석 기체의 최대 수심입니다.

초과 시에는 **빨간색으로 깜박입니다**.

<u>PPO2 한계값에 대한 자세한 내용은 81페이지를</u> 참조하세요.

산소 분압(PPO2)

CC 모드에서는 기본적으로 0.40 이하 또는 1.6 이상일 때 빨간색으로 깜박입니다.

OC 모드에서는 기본적으로 0.19

깜박입니다.

이하 또는 1.65 이상일 때 빨간색으로

희석 기체 PPO2

CC 모드에서만 표시됩니다. 희석 기체의 분압이 0.19 미만 또는 1.65 이상일 때 **빨간색으로 깜박입니다**.

수동으로 희석 기체를 주입할 때는 이 값을 확인하여 현재 수심에서 예상되는 PPO2를 확인할 수 있습니다.

흡입한 02 농도(FiO2)

CC 모드에서만 표시됩니다. O2로 구성된 호흡 기체의 농도입니다. 이 값은 압력과 무관합니다.

CNS 독성 비율

중추신경계 산소 독성 부하율입니다. 90% 이상일 경우 <mark>노란색</mark>으로 바뀝니다. 150% 이상일 경우에는 **빨간색**으로 바뀝니다.

CNS 비율은 수면 위에서 전원이 꺼져 있는 경우에도 계속 계산됩니다. 감압 조직이 초기화되면 CNS도 리셋됩니다.

CNS(중추신경계 산소 독성) 값은 높아진 산소 분압(PPO2) 에 얼마나 오래 노출되었는지를 최대 허용 노출률로 나타내는 것입니다. PPO2가 올라가면 최대 허용 노출 시간이 줄어듭니다. 본 다이브 컴퓨터에서 사용하는 표는 NOAA 다이빙 매뉴얼(제4판)을 따릅니다. 다이브 컴퓨터는 각 항목의 간격을 비례 보충하고 필요한 경우 그 이상을 추론합니다. PPO2가 1.65 ATA보다 높은 경우 CNS 속도는 4초마다 1%의 일정한 속도로 증가합니다.

다이빙 중에는 CNS가 감소하지 않습니다. 수면으로 돌아오면 90분을 제거하는 반감기가 사용됩니다. 예를 들어, 다이빙이 끝날 때 CNS가 80%였다면 90분 후에 40%가 됩니다. 또다시 90분이 지나면 20%가 됩니다. 일반적으로 6번의 반감기가 지나면(9시간) 모든 것이 평형 상태(0%)에 가깝게 돌아갑니다.

속도

상승 또는 하강 속도입니다. 상승 화살표와 동일한 색상 규칙이 적용됩니다. 맞춤 설정 디스플레이로 사용할 수 있습니다..

미니 나침반

항상 띄워둘 수 있는 작은 나침반입니다. 빨간색 화살표는 항상 북쪽을 가리킵니다. 맞춤 설정 디스플레이로만 사용할 수 있습니다

압력경사도 인자

감압 모델이 GF로 설정되어 있을 때의 감압 보수도입니다. 압력경사도 인자의 상한과 하한값이 Bühlmann GF 알고리즘의 보수도를 제어합니다. 자세한 내용은 에릭 베이커의 "Clearing up the Confusion About Deep Stops" 를 참조하세요.

VPM-B(및 VPM-BG)

감압 모델이 VPM-B로 설정되어 있을 때의 감압 보수도입니다.

감압 모델이 VPM-B/GFS이면 수면 상승을 위한 압력경사도 인자도 표시합니다.

GF99

현재 압력경사도 인자를 백분율로 나타낸 것입니다(예: 과포화 백분율 변화도).

0%는 주요 조직의 과포화도가 주변 압력과 동일함을 의미합니다. 조직 장력이 흡입한 불활성 기체의 압력보다 낮은 경우 "On Gas(기체 흡수)"가 표시됩니다.

100%는 주요 조직의 과포화도가 Bühlmann ZHL-16C 모델의 원래 M값 한계와 동일하다는 뜻입니다.

GF99가 현재 압력경사도 인자가 수정된 M값(GF High)을 초과하면 **노란색**으로 표시됩니다.

GF99가 100%(수정되지 않은 M값)를 초과하면 **빨간색**으로 표시됩니다.

SurfGF

다이버가 즉시 수면에 도달할 경우 예상되는 수면 압력경사도 인자입니다.

SurfGF 색상은 현재 GF(GF99) 값에 기반합니다. 현재 GF 가 GF High보다 크면 SurfGF가 <mark>노란색</mark>으로 표시됩니다. 현재 압력경사도 인자가 100%보다 크면 SurfGF가 **빨간색**으로 표시됩니다.

상승 한계

현재 감압의 상승 한계는 이어지는 더 깊은 정지 지점에서의 증가량에서 반올림되지 않습니다 (예: 10ft 또는 3m 의 배수가 아님).

@+5

"@+5"는 현재 수심에서 5분간 유지할 때 수면까지 걸리는 시간(TTS) 입니다. 이 정보는 신체가 얼마나 빨리 기체를 흡수 또는 배출하는지를 파악하는 척도로 사용할 수 있습니다.

현재 수심에서 5분 이상을 유지할 때 TTS의 예상 변화입니다.

"⊿+5"가 양수이면 주요 조직이 기체를 흡수하고 있는 것이고, 음수이면 주요 조직이 기체를 배출하고 있음을 나타냅니다.

배터리

Petrel 3의 배터리 전압입니다. 배터리가 부족하여 교체해야 하는 경우 노란색으로 표시됩니다. 배터리가 매우 부족하면 빨간색으로 표시되며 즉시 교체해야 합니다. 배터리 유형도 표시됩니다.

기체 밀도 디스플레이

기체 밀도 디스플레이는 맞춤 설정 디스플레이로만 사용할 수 있으며, 정보 행에서는 사용할 수 없습니다.

개방식 다이빙에서 기체 밀도 디스플레이는 리터당 6.3g에서 노란색으로 바뀝니다. 다른 경고는 발생하지 않습니다.

폐쇄식 다이빙에서 기체 밀도 디스플레이는 리터당 5.2g일 때 노란색, 리터당 6.3g일 때 빨간색으로 바뀝니다. 다른 경고는 발생하지 않습니다.

기체 밀도는 희석 기체 및 루프 PPO2를 기준으로 한 근사치입니다.

기체 밀도 경고색이 나타나는 수심이 너무 얕아서 놀라실 수 있습니다.

이 레벨을 선택한 자세한 이유는 66페이지를 참조하세요(73 페이지의 권장 사항).

Anthony, T.G and Mitchell, S.J. 재호흡기 다이빙의 호흡 생리학. In: Pollock NW, Sellers SH, Godfrey JM, eds. 재호흡기 및 과학적 다이빙. Proceedings of NPS/NOAA/DAN/ AAUS June 16-19, 2015 Workshop. Durham, NC; 2016.

다이빙 종료 시간(DET)

TTS와 비슷하지만 시각으로 표현됩니다.

즉시 출발할 경우 예상 수면 도달 시간을 나타냅니다. 이때 10mpm 또는 33fpm 속도로 상승하고, 메시지가 나타나면 기체를 변경하고, 지시에 따라 모든 감압 정지를 수행할 수 있습니다.

압력

압력 단위는 밀리바(millibar)입니다. 표시된 두 개의 값은 각 수면(surf) 압력과 현재(now) 압력입니다.

해수면에서의 일반적인 압력은 1,013밀리바이지만, 날씨(기압)에 따라 달라질 수 있습니다. 예를 들어, 수면 압력은 저압 시스템에서는 980millibar, 고압 시스템에서는 1040millibar 만큼 낮을 수 있습니다.

이런 이유로 수면에서 화면에 표시되는 PPO2는 정확하지만, FO2(O2 농도)와 정확히 일치하지 않을 수 있습니다.

수면 압력은 다이빙을 시작하기 10분 전에 다이브 컴퓨터가 확인한 최저 압력을 기준으로 설정됩니다. 따라서 고도는 자동으로 계산되며 별도의 고도 설정은 필요하지 않습니다.

날짜 및 시간

12시간 또는 24시간 형식으로 표시됩니다. 시간 형식은 시계 설정 메뉴에서 변경할 수 있습니다.

타이머

간단한 스톱워치입니다. 타이머는 맞춤 설정 디스플레이로만 사용할 수 있습니다. 정보 행에서는 사용할 수 없습니다.

스택 타이머

CC 모드에서 스택 타이머를 활성화하면 CO2 스크러버 사용량을 추적할 수 있습니다. 고급 설정4 메뉴에서 활성화하면 이 타이머는 다이빙 또는 장치가 켜져 있는 동안 경과한 시간과 남은 시간을 표시합니다.

스택 타이머 구성 옵션 및 설정 방법에 대한 자세한 내용은 <u>82페이지</u>를 참조하세요.

남은 스택 시간이 60분 미만이면 노란색으로 반전되고, 스택 시간 경고 알림이 발동됩니다.

남은 스택 시간이 30분 미만이면 빨간색으로 깜박이고 스택 시간 경고 알림이 발동됩니다. 스택 시간에 즉각적인 주의가 필요할 때는 **스택시간** 알림이 빨간색으로 고정되어 표시됩니다.

남은 스택 시간이 0 미만이 되면 음의 값으로 계속 카운트다운되면서 빨간색으로 깜박입니다. 참고로 미니 디스플레이 스택 시간은 공간 제약으로 인해 음의 값으로 카운트다운할 수 없습니다.

감압 조직 막대그래프

감압 조직 막대그래프는 Bühlmann ZHL-16C 모델에 기반하여 조직 구획에 불활성 기체가 미치는 조직 장력을 보여줍니다.

가장 빠른 조직 구획이 맨 위에 표시되고 가장 느린 조직 구획은 맨 아래에 표시됩니다. 각 막대는 질소와 헬륨 불활성 기체 장력의 합입니다. 압력은 오른쪽으로 갈수록 증가합니다.

수직의 청록색 선은 불활성 기체의 흡입 압력을 나타냅니다. 노란색 선은 주변 압력입니다. 빨간색 선은 ZHL-16C M값 압력입니다.

주변 압력 이상으로 과포화된 감압 조직은 노란색으로 표시되고, M값 이상으로 과포화된 감압 조직은 빨간색으로 표시됩니다.

각 감압 조직 구획의 크기는 서로 다르다는 점에 유의해야 합니다. 이처럼 막대의 크기가 달라지는 이유는 감압 조직 장력을 위험 요소로 시각화할 수 있기 때문입니다(즉, 조직 장력이 Bühlmann의 원래 과포화 한계에 얼마나 가까워졌는지 백분율로 나타냄). 또한 M값 선이 수심에 따라 바뀌기 때문에 막대 크기 또한 수심에 따라 달라집니다.

감압 조직 막대그래프 예시

주의: 이때 기체는 79% N, (21% O, 또는 공기)입니다

마지막 감압 정지 주의: 현재 기체는 50% 0, 및 50% N,입니다

3.6. 미니 디스플레이

미니 디스플레이는 글꼴 크기가 작은 대신 데이터를 사용자 지정할 수 있습니다.

구성 가능한 2개의 별도 미니 디스플레이는 OC Tec 및 CC/ BO 모드에서 동일하게 표시됩니다. 미니 디스플레이는 왼쪽 및 오른쪽의 사용자 지정 위치에서만 사용할 수 있습니다.

미니 디스플레이를 맞춤 설정하는 방법에 대한 자세한 내용은 <u>75페이지</u>를 참조하세요.

미니 디스플레이를 완전히 채우고, 중앙 위치를 맞춤 설정하고 미니 NDL 대체 옵션을 사용하면 최대 9개의 사용자 지정 필드를 동시에 표시할 수 있습니다. 제대로 설정하지 않으면 너무 많은 정보가 나타날 수 있습니다.

실시 중인 다이빙 유형에 중요한 정보들을 놓치지 않도록 주의해야 합니다.

이 섹션에서는 다이브 컴퓨터가 다이버에게 제공하는 다양한 종류의 알림에 대해 설명합니다.

다이버에게 표시되는 기본 알림 목록은 <u>25페이지</u>를 참조하세요.

컬러 코딩

텍스트의 색상을 달리하여 문제나 안전하지 않은 상황이 생겼을 때 다이버의 주의를 집중시킵니다.

초록색 텍스트는 기본적인 정상 상태를 나타냅니다.

이 정상 상태의 컬러는 <u>80페이지</u>에 설명된 고급 구성 메뉴에서 선택할 수 있습니다

노란색은 바로 위험하지는 않지만 해결해야 하는 경고에 사용됩니다.

빨간색 깜박임은 즉시 해결되지 않을 경우 생명에 위협을 받을 수 있는 심각한 경고에 사용됩니다.

알림 종류

이 다이브 컴퓨터에 표시되는 알림에는 두 가지 유형이 있습니다. 기본 알림 및 고정 알림입니다.

기본 알림

각 기본 알림은 해제될 때까지 하단 행에 노란색 메시지로 표시됩니다.

두 버튼 중 하나를 누르면 알림이 해제됩니다.

PPO2 높음 경고

예를 들어, 이 "HIGH PPO2(PPO2 높음)" 메시지는 평균 PPO2가 30초 이상 PPO2 높음 한계를 초과하면 나타납니다.

우선순위가 가장 높은 알림이 먼저 나열됩니다. 여러 오류가 동시에 발생하면 우선순위가 가장 높은 알림이 표시됩니다. 다음 알림을 보려면 버튼을 눌러 첫 번째 알림을 지웁니다.

진동 경보가 켜져 있으면 경보가 처음 발생할 때 장치가 진동하고, 경보를 확인할 때까지 10초마다 진동합니다.

다이버에게 표시되는 기본 알림 목록은 <u>25페이지</u>에서 확인할 수 있습니다.

고정 알림

고정 알림은 기본 알림을 보완하는 역할로, 위험한 상황이 발생할 때 해당 조건이 해결될 때까지 표시됩니다.

고정 알림을 일으킨 조건이 유지되는 동안에는 알림을 지울 수 없습니다.

예: PPO2가 안전하지 않은 범위에 있으면

TIME STOP

3

92

DEPTH

)

알림 예시

· 중앙 행에 "Low PPO2(PPO2 DEPTH

- 당 응 응 아이 신전(11) 낮음)"또는 "High PPO2(PPO2 높음)" 메시지가 표시됩니다.
- PPO2 및 기체 값이 강조 표시되며 깜박입니다.

이러한 고정 알림은 안전한 PPO2 가 복원되면 자동으로 지워집니다.

"High PPO2(PPO2 높음)" 고정 알림 예시

모든 경보 시스템에는 취약점이 있습니다.

오류 상태가 없어도 알람이 발생할 수 있습니다 (거짓 양성). 또는 실제 오류 상태가 발생했는데 알람이 울리지 않을 수 있습니다(거짓 음성).

알람이 표시되면 이에 대응하더라도 절대 여기에만 의존해서는 안 됩니다. 최선의 방어책은 다이버의 판단력, 교육 및 경험입니다. 고장에 대비하는 계획을 세우고, 천천히 경험을 쌓고, 능력에 맞는 다이빙을 하시기 바랍니다.

진동 경보

Petrel 3에는 시각적 알림 외에도 진동 경보가 있어 경고, 오류 및 다이빙 이벤트를 다이버에게 신속하게 알릴 수 있습니다.

진동을 켜면 안전 정지를 시작하거나 일시 중지하거나 완료할 때 주의를 요하는 진동 경보가 발생합니다. 진동 경보는 기본 알림이 발동할 때, 그리고 알림을 확인할 때까지 10초마다 울립니다.

진동이 멈추지 않는 조건이 몇 가지 있는데, PPO2 낮음 (low PPO2)과 같이 상태가 해결되지 않으면 진동이 계속 울리립니다.

진동 경보는 <u>77페이지의 경보 설정</u> 또는 <u>61페이지의 다이빙</u> <u>설정에</u>에 설명된 대로 시스템 설정 메뉴에서 켜거나 끌 수 있습니다.

진동 테스트 도구는 다이빙 설정 메뉴에서도 사용할 수 있으며, 다이빙 전에 정기적으로 사용하여 진동이 제대로 작동하는지 점검해야 합니다.

진동 여부는 배터리에 따라 다릅니다

진동 경보는 1.5V 리튬 또는 3.7V 충전식 리튬 이온 배터리를 사용하는 경우에만 사용할 수 있습니다.

<mark>!</mark> 주의

진동 경보는 매우 유용하지만 안전을 위해 절대 여기에만 의존하지 마십시오. 전자 장치는 언제든 고장 날 수 있습니다.

항상 수심, 무감압 한계, 기체 공급 및 기타 중요 다이빙 데이터를 사전에 인지하고 있어야 합니다. 안전에 대한 책임은 결국 자신에게 있습니다.

다음 표는 화면에 표시되는 기본 알림과 그 의미, 문제 해결을 위한 조치 단계입니다.

여러 경고가 동시에 발생하면 우선순위가 높은 알림이 표시됩니다. 다음 알림을 보려면 아무 버튼이나 눌러 알림을 지웁니다.

Shearwater에 문의하기

다음의 알림 목록이 전부는 아닙니다. 예상치 못한 오류가 발생할 경우 Shearwater(info@shearwater.com)에 문의하시기 바랍니다

디스플레이	의미	필요한 조치
Warning Confirm	PPO2가 PPO2 한계 메뉴에서 설정한 한계보다 낮습니다.	호흡 기체를 현재 수심에 안 전한 기체로 변경하세요.
Warning Confirm HIGH PPO2	PPO2가 PPO2 한계 메뉴에서 설정한 한계보다 높습니다.	호흡 기체를 현재 수심에 안 전한 기체로 변경하세요.
Warning Confirm MISSED DECO STOP	필수 감압 정지를 위반했습니다.	현재 표시된 정지 수심보다 더 깊이 하강하세요. DCS 증 상을 모니터링하세요. 차후 의 반복 다이빙을 위해 추가 적인 보수도를 사용하세요.
Warning Confirm FAST ASCENT	상승 속도를 10m/분 (33ft/분)보다 더 빠르게 유지했습니다.	느린 상승 속도를 사용하세 요. DCS 증상을 모니터링하 세요. 차후의 반복 다이빙을 위해 추가적인 보수도를 사 용하세요.

PETREL·3 테크니컬 모드 사용 설명서

디스플레이	의미	필요한 조치
Warning Confirm	내부 배터리가 부족합니다.	배터리를 교체합니다.
Warning Confirm TISSUES CLEARED	감압 조직의 불활성 기체 부하가 기본 수준으로 설정되었습니다.	반복 다이빙을 적절히 계획 하세요.
Warning Confirm VERY HIGH CNS	중추신경계(CNS) 독성 시계가 150%를 초과했습니다.	PPO2가 더 낮은 기체로 변경 하거나 얕은 수심(감압 상승 한계가 허용하는 수심)으로 상승하세요.
Warning Confirm HIGH CNS	- 중추신경계(CNS) 독성 시계가 90%를 초과했습니다.	PPO2가 더 낮은 기체로 변경 하거나 얕은 수심(감압 상승 한계가 허용하는 수심)으로 상승하세요.
Alert Confirm LOW NDL Alert	NDL이 NDL 낮음 경고 값보다 낮습니다. (경보가 활성화된 경우에만)	감압 의무를 피할 수 있게 바 로 상승하세요.
Alert Confirm Depth Alert	수심이 수심 경고 값보다 더 깊습니다. (경보가 활성화된 경우에만)	수심 한계 이상으로 상승하 세요.
Alert Confirm Time Alert	다이빙 시간이 시간 경보 값을 초과했습니다. (경보가 활성화된 경우에만)	다이빙을 안전하게 종료하 세요.
No Comms 210 R Products Produc	30초~90초 동안 통신이 끊겼습니다.	자세한 내용은 <u>51페이지</u> 의 트랜스미터 연결 문제섹 션을 참조하세요.
No comms + Warning Confirm AI LOST COMMS	90초 이상 통신이 끊겼습니다.	자세한 내용은 <u>51페이지</u> 의 트랜스미터 연결 문제 섹션 을 참조하세요.

디스플레이	의미	필요한 조치
Low Bat 3042 Warning Confirm AI LOW BATTERY	트랜스미터 배터리가 부족합니다.	트랜스미터 배터리를 교체 합니다.
11	탱크 압력이 정격 압력을 10% 이상 초과합니다.	AI 설정 메뉴에서 정격 압 력을 올바르게 설정하세요. <u>73페이지</u> 를 참조하세요.
T1 Warning Confirm T1 CRITICAL PRES	탱크 압력이 임계 압력 아래로 떨어졌습니다.	기체가 떨어지고 있으니 주 의합니다. 다이빙 종료를 시 작하고 수면까지 적절히 조 절하며 상승합니다.
GTR T1	수면에 있을 때는 GTR을 사용할 수 없습니다.	조치가 필요하지 않습니다. GTR은 다이빙을 하면 표시 됩니다.
GTR T1 wait	수면에 있을 때는 GTR을 사용할 수 없습니다.	조치가 필요하지 않습니다. 몇 분 후 데이터를 충분히 수 집하면 표시됩니다.
Warning Confirm STACK TIME WARN	남은 스택 시간이 1시간 미만입니다.	다이빙을 안전하게 종료하 세요.
Warning Confirm STACK TIME ALARM	남은 스택 시간이 30분 미만입니다.	다이빙을 안전하게 종료하 세요.
Error Confirm WATCHDOG RESET	다이브 컴퓨터가 예기치 않은 소프트웨어 상태에서 복구하기 위해 초기화되었습니다.	이 문제가 장기간 한 번 이상 발생하는 경우, Shearwater Research Inc.에 신고하세요

디스플레이	의미	필요한 조치
Error Confirm UPGRADE RESET	이 초기화 화면은 소프트웨어 업데이트 후에 표시됩니다. 이는 소프트웨어 업데이트 후 컴퓨터가 재부팅되었음을 나타내는 정상적인 화면입니다.	없음
Error Confirm UPGRADE FAIL	통신 오류 또는 손상된 파일로 인해 펌웨어를 업데이트하지 못했습니다.	펌웨어 업그레이드를 다시 시 도하세요. 문제가 계속되면 Shearwater로 문의하세요.

3.9. 감압 정지

테크니컬 다이빙 모드에는 안전 정지가 없습니다. 감압 정지는 감압병(DCI)의 위험을 줄이기 위해 반드시 준수해야 하는 필수 정지입니다.

🛿 자신의 훈련 수준 이상으로 다이빙하지 마세요

감압 다이빙은 적절한 교육을 받은 경우에만 수행하세요.

동굴 또는 난파선처럼 머리 위가 가려진 다이빙 또는 감압이 요구되는 다이빙에는 상당한 위험이 수반됩니다. 고장에 대비하는 계획을 세우고 절대 단일 정보 소스에만 의존하지 마세요.

감압 정지는 10ft(3m)의 고정적인 간격으로 생성됩니다.

감압 정지 디스플레이는 다음과 같이 표시됩니다.

감압 정지 디스플레이

NDL이 0에 도달하면 감압 정지 정보가 상단 행의 오른쪽에 나타나기 시작합니다.

감압 정지 위반

현재 정지해 있는 수심보다 얕은 수심으로 상승할 경우 감압 정보가 **빨간색으로 깜박**입니다.

심각한 감압 정지 위반이 발생하면 "정지 누락" 알림이 발생합니다. 이 알림을 해제하려면 아무 버튼을 누릅니다.

Warning Confirm MISSED DECO STOP

감압 정지 완료

기본적으로 감압 완료 카운터가 활성화되어 있습니다. 모든 감압 정지를 완료하면 감압 완료 카운터가 0부터 카운트를 시작합니다.

감압 완료 카운터가 꺼져 있으면 디스플레이에 "완료"라고 표시됩니다.

쀍 감압 정지 위반 시에도 조작 가능

감압 정지를 위반해도 조작이 강제 잠금되거나 기타 불이익이 발생하지 않습니다.

이러한 Shearwater의 정책은 감압 일정을 위반했다는 경고를 분명히 제공하면서 다이버가 자신의 훈련 수준에 기반하여 결정을 내릴 수 있도록 하기 위한 것입니다.

여기에는 다이버가 다이빙 보험 제공자나 가까운 재압 챔버 시설에 문의하거나, 훈련 수준에 기반하여 응급 처치를 수행하는 것이 포함될 수 있습니다.

4. 감압 및 압력경사도 인자

이 다이브 컴퓨터에서 사용하는 기본 감압 알고리즘은 Bühlmann ZHL-16C입니다. 에릭 베이커(Erik Baker) 가 개발한 압력경사도 인자를 사용해 수정한 것입니다. Shearwater는 그의 아이디어를 사용하여 자체적인 코드를 만들었습니다. 감압 알고리즘 교육에 기여한 에릭 베이커에게 큰 감사를 드리며, 그는 Shearwater가 만든 코드에 대해 어떠한 책임도 지지 않음을 알립니다.

다이브 컴퓨터는 다양한 수준의 보수도를 만드는 압력경사도 인자를 구현합니다. 보수도의 수준은 30/70과 같은 숫자 쌍으로 이루어져 있습니다. 이러한 숫자 쌍이 지니는 의미에 대한 자세한 설명은 에릭 베이커의 논문 "Clearing Up The Confusion About Deep Stops" 및 "Understanding M-values"를 참조하세요. 논문은 인터넷에서 쉽게 찾아볼 수 있습니다. 또는, 인터넷에서 "압력경사도 인자"를 검색해보시기 바랍니다.

시스템의 기본 보수도는 다이빙 모드에 따라 다릅니다.

OC Rec 모드의 경우 기본 보수도 설정은 중간(40/85) 입니다.

일부 감압이 예상되는 OC Tec 및 CC/BO 모드의 기본값은 보다 보수적인 30/70입니다. 시스템은 기본값보다 공격적인 몇 가지 설정을 제공합니다.

이로 인한 영향을 이해하기 전에는 GF 값을 편집하지 마세요.

그래프 출처: 에릭 베이커의 "Clearing Up The Confusion About Deep Stops"

압력 그래프: 압력경사도 인자

- 압력경사도 인자는 단순히 M값 압력경사도의 소수(또는 백분율)입니다.
- 압력 경사도인자(GF)는 0%에서 100%로 정의됩니다.
- 압력경사도 인자 0%는 주변 압력선을 나타냅니다.
- 압력경사도 인자 100%는 M값 선을 나타냅니다.
- 압력경사도 인자는 감압 영역 내 보수도에 맞춰 원래 M값 수식을 수정합니다.
- 낮은 압력경사도 인자값(GF Lo)은 첫 정지의 수심을 결정합니다. "가능한 가장 깊은 감압 정지" 수심까지 깊은 정지(딥정지)를 만드는 데 사용됩니다.
- 높은 압력경사도 인자 값(GF Hi)은 수면 상승 시 조직의 과포화를 결정합니다.

4.1. 감압 정보 정확도

NDL, 정지 수심, 정지 시간, TTS 등 이 다이브 컴퓨터에 표시되는 감압 정보는 예측값입니다. 이러한 값은 지속적으로 재계산되며 조건이 변하면 그에 따라 변합니다. 이와 같은 예측의 정확도는 감압 알고리즘에 의한 몇 가지 가정에 따라 달라집니다. 정확한 감압 예측을 보장하려면 이러한 가정을 이해하는 것이 중요합니다.

다이버의 상승 속도는 10m/분(33ft/분)으로 가정합니다. 이보다 훨씬 빠르게 또는 느리게 상승하면 감압 의무에 영향을 줍니다. 또한 다이버가 운반 중인 현재 켜져 있는 모든 기체를 사용할 계획이라고 가정합니다. 사용하지 않을 기체를 켜 두면 수면까지 걸리는 시간과 감압 정지 및 감압 시간 정보가 부정확하게 표시됩니다.

상승 시에는 다이버가 OC 감압 PPO2 값(기본값 1.61) 미만의 PPO2가 가장 높은 기체를 사용하여 감압 정지를 수행할 것이라고 가정합니다. 더 나은 기체가 있는 경우 현재 기체가 노란색으로 표시되며 기체 변경이 예상됨을 나타냅니다. 다이브 컴퓨터에 표시되는 감압 예측은 항상 최선의 기체를 사용한다고 가정합니다. 더 나은 기체로의 변경이 완료되지 않았더라도 감압 예측은 향후 5초 내에 변경이 이루어질 것처럼 표시됩니다.

다이브 컴퓨터에 이러한 메시지가 표시되었을 때 다이버가 더 나은 기체로 변경하지 못한 경우 감압 정지 시간이 예상보다 더 오래 걸릴 수 있고, 수면까지 예측 시간 또한 부정확할 수 있습니다. **예:** GF 설정값이 45/85인 상태에서 40분 동안 40m/131ft 까지 감압 다이빙을 하는 다이버가 다이브 컴퓨터에 두 개의 기체(21% O2 및 99% O2)를 프로그래밍하고 21/00 및 99/00으로 켜두었습니다. 다이버의 감압 일정은 다이버가 6m/20ft로 상승할 때까지 하강, 잠수 및 상승 단계에서 산소 21%로 호흡한다는 기준으로 계산됩니다. 6m/20ft에서 99/00 혼합물의 PPO2는 1.606(1.61 미만) 이므로 이 기체가 가장 적합한 감압 기체입니다.

나머지 정지에 관한 감압 정보는 다이버가 이 더 나은 기체로 변경한다고 가정하여 계산되고 표시됩니다. 이 다이빙 프로필은 이 정지가 6m/20ft에서 8분, 3m/10ft에서 12분 소요됨을 나타냅니다. 다이버가 99/00로 변경하지 않을 경우, 다이버 컴퓨터는 적절한 기체 배출이 이루어질 때까지 다이버가 상승하지 못하도록 하지만, 컴퓨터는 계속해서 다이버가 기체를 변경할 것이라 가정하기에 매우 부정확한 감압 시간이 표시됩니다. 6m/20ft 지점의 정지는 완료하는 데 19분이 소요되며 3m/10ft에서의 정지를 완료하는 데는 38분이 소요됩니다. 수면까지 걸리는 총 시간의 차이가 37분인 것입니다.

기체 손실 시나리오가 발생하거나 다이버가 다이빙을 시작하기 전에 운반하지 않는 기체를 끄는 걸 잊을 경우, 다이빙 중에도 메인 메뉴 -> 기체 편집에서 기체를 끌 수 있습니다.

5. 다이빙 예시

5.1. 단순 OC Tec 다이빙 예시

다음은 OC Tec 모드에서 단순 감압 다이빙 시 나타날 수 있는 디스플레이의 예시입니다.

1. 기체 설정 - 각 다이빙 전에 기체 목록을 확인하는 것이 바람직합니다. 이 화면은 시스템 설정 메뉴에서 볼 수 있습니다. 이 다이빙은 공기만 사용합니다. 다이빙 시 사용하지 않을 기체는 모두 끄세요.

2. 설정 확인 - 모든 다이빙을 시작하기 전에 모든 설정이 올바른지 확인하는 것이 좋습니다. 수중에서는 일부 설정을 수정할 수 없습니다.

3. 다이빙 계획 – 감압 플래너를 사용하여 총 다이빙 시간, 감압 일정 및 필요한 기체 양을 확인합니다.

탑재된 감압 플래너의 기능은 제한적입니다. 복잡한 다이빙을 하려는 경우에는 데스크톱이나 스마트폰의 다이빙 계획 소프트웨어를 사용하는 것이 좋습니다.

4. 다이빙 전 - 하강하기 직전의 수면 화면입니다. 컴퓨터가 OC 모드이고 21% O2를 선택했음을 나타냅니다.

5. 하강 - 10m를 지나고 있고, 수면까지 걸리는 시간(TTS)이 1분으로 표시되어 있습니다. 즉, 다이브 컴퓨터는 다이버가 분당 약 10m 또는 33피트의 속도로 상승할 것이라고 예상하고 있다는 뜻입니다. 감압 예측은 이 상승 속도에 기반합니다.

6. NDL 감소 - 무감압(NDL) 한계값이 99부터 표시되기 시작하지만 수심이 증가하면 숫자가 낮아집니다. 이 화면은 12분 내에 감압이 시작됨을 나타냅니다.

) 0(Gases	S	
A1	00	0n	21/00
2	00	0ff	00/00
3	00	0ff	00/00
4	00	0ff	00/00
5	00	0ff	00/00
Next			Edit
1. <i>7</i> .	체 설정		

Depth Time RMV 030 030 -14 Gas tn Tme Run Ont 30 bot 00 164 32 12 asc 00 / 12 12 9 6 33 37 21/00 4 /00 44 21/00156 Ouit Next

3. 다이빙 계획

4. 다이빙 전

(다음 페이지에 계속)

테크니컬 모드 사용 PETREL·3 설명서

7. 최대 수심 - 이제 감압 요구 사항이 생깁니다. 첫 번째 정지 수심은 12미터이며 최대 1분 동안 이곳에 머물러야 합니다. 정지 시간은 분 단위로 표시되지만 다이브 컴퓨터는 실시간으로 상승 한계를 계산 및 변경하며, 이 정지에 걸리는 시간은 1분 미만입니다.

이제 수면 상승 시간(TTS)이 현재 계산된 감압 일정에 따라 수면까지 상승하는 데 26분이 걸릴 것이라고 나타냅니다.

8. 상승 - 상승할수록 상승 속도 표시부에 2개의 화살표가 표시됩니다(약 6mpm/20fpm). 이 속도는 감압 계산에서 가정하는 10mpm/33fpm보다 느립니다. 이처럼 느린 상승 속도로 인해 수면에 도착하기 전에 감압 정지가 조기에 완료될 수 있습니다.

9. 정지 누락 - 정지 수심인 6m 보다 더 얕은 수심으로 상승하면 감압 정지 정보가 빨간색으로 깜빡이기 시작합니다. 심각한 정지 위반이 발생하면 감압 정지 누락 알림이 발생합니다.

10. 감압 완료 - 마지막 정지 수심을 완료하면 감압 완료 카운터로 바뀌면서 정지 수심과 시간을 ()부터 카운트하기 시작합니다. 또한 99분의 NDL도 다시 나타납니다. 수면에 도달하면 수심이 0으로 되돌아가고 1분 후에 컴퓨터의 다이빙 모드가 꺼지면 NDL도 0이 됩니다.

7. 최대 수심

8. 상승

9. 정지 누락

10. 감압 완료

테크니컬 다이빙 모드에는 안전 정지 카운트다운이 없습니다

마지막 감압 정지에 시간을 더 들이면 감압병의 전반적인 위험이 감소한다는 것이 통념입니다.

테크니컬 다이빙 모드에 안전 정지 카운트다운을 포함하지 않은 이유는 테크니컬 다이버들은 위와 같은 통념에 따라 감압 위험을 관리하기 위해 다이빙 전에 감압 계획을 수립한다는 사실을 알기 때문입니다.

감압 완료 카운터는 다이버들이 최종 감압 정지를 조금 더 보수적으로 수행하는 데 유용한 도구입니다.

5.2. 복잡한 OC Tec 다이빙 예시

다음은 OC Tec 모드에서 다중 기체 트라이믹스 감압 다이빙 시 나타날 수 있는 디스플레이의 예시입니다.

최대 수심: 60m	바닥 기체: 트라이믹스(18/45)
바닥 시간: 20분	감압 기체: 50% 및 99% O2

1.0C 기체 설정 - 각 다이빙 전에 기체 목록을 확인하는 것이 가장 모범적입니다. 이 화면은 시스템 설정 메뉴에서 볼 수 있습니다. 켜져 있는 모든 기체는 감압 일정을 계산하는 데 사용됩니다. 운반하지 않거나 사용할 계획이 없는 기체는 반드시 끕니다.

2. 설정 확인 - 매 다이빙을 시작하기 전에 모든 설정이 올바른지 확인하는 것이 좋습니다. 기체 점검 외에도 모든 시스템 설정 페이지의 설정을 확인하는 것이 좋습니다.

3. 다이빙 계획 - 다이빙 설정에 있는 감압 플래너를 사용하여 다이빙에 소요되는 총 시간, 감압 일정 및 기체 요구 사항을 확인합니다.

복잡한 다이빙을 하려는 경우에는 데스크톱이나 스마트폰의 다이빙 계획 소프트웨어를 사용하는 것이 좋습니다. 탑재된 감압 플래너는 다이브 컴퓨터 설정이 다이버의 기대치에 부합하는 계획을 생성하는지 확인할 때 효과적인 도구입니다.

4. 다이빙전 - 다이빙을 시작하기 전에 현재 활성 기체가 18/45이고, 배터리 충전 수준이 양호하다는 것을 확인할 수 있습니다. 수심 표시의 십진수는 단위로 미터를 선택했다는 의미입니다.

5. 하강 - 하강할 때 다이빙 시간이 카운트되기 시작하고 PPO2가 증가하며 NDAL은 줄어듭니다.

> 0C	Ga	ses	
1	00	0n	99/00
2	00	On	50/00
A3	00	0n	18/45
4	00	Off	00/00
5	00	Off	00/00
Next			Edit

Deco Setur)
Deco Model	GF
Conserv (GF)	30/70
Last Stop	6m
NDL Display	NDL
Clear Cntr	0n
Next	Edit

1. OC 기체 설정

00	060 060	n Tin) 02	1e 20	RMV 15	
Stp	Tme	Run	G	as	
60	bot	20	18	/45	
30	asc	23	18	/45	
30	1	24	18	/45	
27	1	25	18	/45	
24	1	27	18	/45	
Ouit	F				Next

3. 다이빙 계획 -감압 일정

	epth Tir 060 02	ne F 20	3MV 15
Gas	Usage,	in	Liters
99/(50/(18/4	00:461 00:518 45:2411		
Quit			Next

3. 다이빙 계획 – 기체 요구 사항

2. 감압 확인

설정

(다음 페이지에 계속)

6. 최대 수심 - NDL이 0에 도달하면 감압 정지가 필요합니다. 이제 정지 요구 사항이 화면 오른쪽 상단에 표시됩니다. TTS 가 감압 정지 시간을 포함하도록 증가했습니다.

7. 상승 - 24m까지 상승하는 것이 안전합니다. 이 감압 정지 지점에서 2분 정도 머물러야 합니다. 수심의 오른쪽에 있는 막대그래프가 상승 속도(10mpm)를 나타냅니다. 모든 감압 예측값은 분당 상승 속도가 10m라는 가정하에 계산된 것입니다.

8. 기체 변경 - 모든 감압 예측값은 다이버가 상승 시 최선의 기체로 변경한다는 가정하에 계산된 것입니다. 21m 정지 지점에서 호흡 기체가 노란색으로 변하면서 더 나은 호흡 기체를 사용할 수 있음을 나타냅니다. 기체를 변경하지 않으면 조직 부하 계산에는 활성 기체를 사용하지만, 예상 감압 정지 및 시간 계산은 향후 5초 이내에 기체 변경이 일어날 것이라고 가정합니다. 다이빙 설정 > 기체 정의 메뉴에서 다이빙 중에 사용 가능한 기체를 추가하거나 뺄 수 있습니다.

9. PPO2 높음 - 50% O2로 변경한 후에 다이버는 몇 미터 하강했고 흡입한 PPO2가 기본 경고값 이상으로 상승했으며 PPO2 높음 경고가 발동되었습니다. 아무 버튼을 누르면 기본 알림이 지워지지만 PPO2 경고의 경우 PPO2 경고 조건이 해결될 때까지 다이브 컴퓨터가 계속 진동하며 다이버에게 주의를 줍니다.

10. 감압 정지 누락 - 다이버가 감압 한계보다 얕은 수심으로 상승했습니다. 감압 정보가 빨간색으로 깜박이고 잠시 후 감압 정지 누락 경고가 발동됩니다. 아무 버튼이나 눌러 경고를 지우고 진동 경보를 멈춥니다. 깜박이는 텍스트를 없애려면 정지 수심보다 더 깊게 다시 하강합니다.

11. 감압 완료 - 모든 감압 의무를 완료하면 감압 완료 카운터가 0부터 카운트를 시작합니다.

6. 최대 수심

8. 기체 변경

9. PPO2 높음

DEPTH TIME CLEAR 3.0 67 5:03 PP02 1.30 02/HE NDL TTS 0C 99/00 99 1

10. 정지 누락

11.감압 완료

5.3.CC 다이빙 예시

다음은 CC/BO 모드에서 다중 기체 감압 다이빙 시 나타날 수 있는 디스플레이의 예시입니다.

최대 수심: 90m 희석 기체: 트라이믹스(10/50) 바닥 시간: 20분 베일아웃 기체: 14/55, 21%, 50%

1. CC 기체 설정 - 각 다이빙 전에 기체 목록을 확인하는 것이 가장 모범적입니다. CC 및 BO 기체 설정 화면은 시스템 설정 메뉴에서 사용할 수 있습니다. 이 다이빙에서 유일한 희석 기체는 트라이믹스 10/50입니다. (10% O2, 50% He, 40% N2)

2. BO 기체 설정 - 이 다이빙에는 몇 가지 베일아웃 기체가 필요합니다. BO 모드로 변경하면 다이빙 설정 > 기체 정의 메뉴를 사용하여 베일아웃 기체를 편집하거나 켜거나 끌 수도 있습니다.

다이빙을 계획할 때 베일아웃 기체가 충분한지 확인합니다.

3. 설정 확인 - 모든 다이빙을 시작하기 전에 모든 설정이 올바른지 확인하는 것이 좋습니다. 특히 고급 테크니컬 다이빙의 경우에는 시스템 설정 메뉴의 모든 화면에서 값을 다시 확인해야 합니다.

4. 다이빙 계획 - 다이빙 도구에 있는 감압 플래너를 사용하여 현재 설정 시 다이빙에 소요되는 총 시간, 감압 일정 및 베일아웃 기체 요구 사항을 확인합니다.

폐쇄식 다이빙의 경우 2개의 감압 일정이 생성됩니다. 하나는 폐쇄식 감압 일정이고, 다른 하나는 베일아웃 감압 일정입니다.

탑재된 감압 플래너의 기능은 제한적이기 때문에 복잡한 다이빙을 하려는 경우에는 데스크톱이나 스마트폰의 다이빙 계획 소프트웨어를 사용하는 것이 좋습니다. 탑재된 플래너를 사용하여 다이빙 계획을 다시 점검하면 감압 설정을 효과적으로 확인할 수 있습니다.

(다음 페이지에 계속)

CC Gas	Ses	
A1 CC	0n	10/50
2 CC	Off	00/00
3 CC	Off	00/00
4 CC	Off	00/00
5 CC	Off	00/00
Next		Edit
	- 11 11 - 1	

BO Ga	ses	
1 OC	0n	50/00
2 00	0n	21/00
3 OC	0n	14/55
4 OC	Off	00/00
5 OC	Off	00/00
Next		Edit
2. OC 7	체 설정	ı

1. CC 기체 설정

Deco Setup)
Deco Model	GF
Conserv (GF)	30/70
Last Stop	6m
NDL Display	GF99
Clear Cntr	On
Next	Edit

3. 감압 확인 설정

CC	Dept 090	h Tin D D2	1e 20	RMV 15	P02
Stp	Tme	Run	(Gas	
90	bot	20	1()/50	
48	asç	25	10)/50	
48]	26	10)/50	
45	- 1	27)/5U	
42	+	20		J/ 50	Novt
Qui	L				NEXL

4. 다이빙 계획 -CC 일정

)eptl	n Tin	ıe	RMV	P02
DV	09() 02	20	15	1.3
Stp	Tme	Run	(Gas	Qty
66	bot	23	14	1/55	316
42	asc	25	2	1/00	230
42	1	26	2	1/00	78
39	1	27	2	1/00	74
36	1	28	2	1/00	69
Ouit Next					

4. 다이빙 계획 -BO 일정

4. 다이빙 계획 -기체 베일아웃 요구 사항

CC 다이빙 예시(계속)

저산소 희석 기체 주의 사항

이 예시에 나온 10/50과 같은 저산소 희석 기체는 수면 근처에서 치명적일 수 있으므로 특수 훈련이 필요합니다.

5. PPO2 보정 - PPO2 센서에 보정이 필요한 경우 재호흡기 제조업체의 지침을 따르세요.

시스템 보정에 대한 자세한 내용은 56페이지에서 확인하세요.

6. 다이빙전 - 다이빙을 시작하기 전에 CC 모드라는 표시를 확인할 수 있습니다. 활성 희석 기체가 10/50으로 설정되고 설정값은 0.7이며 Petrel 3의 배터리가 충분히 충전되었습니다.

7. 희석 기체 점검 - 오른쪽 버튼을 몇 번 누르면 희석 기체 PPO2가 나타납니다. 빨간색은 희석 기체를 직접 호흡하기에 안전하지 않다는 뜻입니다.

이 정보는 희석 기체가 안전한지 확인하거나 수심에서 희석 기체를 주입할 때 예상되는 PPO2를 확인해야 하는 경우에 언제든지 볼 수 있습니다.

8.NDL 감소 - 더 깊이 하강할수록 NDL이 줄어듭니다. TTS 가 10m/분(33ft/분)의 속도로 수면으로 상승하는 데 5분이 걸린다고 나타내고 있습니다.

9. 바닥시간 - 바닥 시간을 완료했습니다. TTS에 따르면 약 1.5시간 동안 감압해야 합니다. 첫 번째 정지는 48m에서 1 분 동안 정지하는 것입니다. 감압 의무가 있지만 GF99가 NDL을 대체하도록 설정되어 있습니다.

10. 첫 정지까지 상승 - 지금 3m/분의 속도로 상승하고 있습니다. 이는 예상 상승 속도인 10m/분보다 느린 것입니다. 상승 속도가 느려지면서 TTS가 높아졌습니다. 대부분의 조직이 기체를 흡수 중이기 때문입니다. (다음 페이지에 계속)

5. PPO2 보정

6. 다이빙 전

DEPTH . ()	TIME.		On 58m
.98	. 9	98	.98
DilPO2	cns ()	sp .7	AvgP02

7. 희석 기체 점검

8. NDI 감소

9. 바닥 시간

CC 다이빙 예시(계속)

11. 첫 감압 정지 - 느린 상승 속도로 인해 첫 정지 수심에 도달하기 전에 첫 정지가 완료되었습니다. 이러한 현상은 상승 속도가 느릴 때 보통 발생합니다.

12. 한 가지 문제가 발생했습니다. 노란색의 셀 판독값이 다른 두 셀 판독값과 다릅니다. 희석 기체를 주입해 보면 실제로 노란색 셀이 올바른 것으로 나타났습니다. 그래서 개방식으로 베일아웃하기로 결정했습니다. BOV 또는 마우스피스를 물리적으로 변경한 후에는 감압 계산이 제대로 되도록 다이브 컴퓨터를 BO 모드로 설정해야 합니다.

메뉴를 두 번 누르면 "CC에서 BO로 변경" 메뉴가 나타납니다. SELECT를 누르면 변경됩니다.

13. 베일아웃 - 루프 PPO2가 계속 표시됩니다. 이 기능은 나중에 다이버가 루프로 다시 돌아가야 할 때 중요합니다. 또한 "BO"가 노란색으로 표시되면 베일아웃 상태를 나타내는 것입니다. 최적의 BO 기체가 자동으로 선택되었고 모든 사용 가능한

BO 기체를 기준으로 감압 일정이 조정되었습니다. **14. 기체 변경 필요** - 현재 21m에 있으며, 감압 정지를 몇

14. 기체 단영 별표 - 현재 2111에 있으며, 점접 정치를 및 번 완료했습니다. 기체가 노란색으로 표시되며 더 나은 기체가 있음을 나타내고 있습니다.

15. 기체 변경 – 왼쪽(MENU) 버튼을 누르면 메인 메뉴에 "기체 선택" 옵션이 나타납니다. 이 예에서는 "새로운" 기체 선택 메뉴를 사용합니다(<u>60페이지</u>). 기체 선택 메뉴에 들어가면 최적의 기체가 이미 선택되어 있으므로, 선택을 한 번 더 눌러 활성 기체로 만듭니다.

16. 감압 완료 - 모든 감압을 완료할 때까지 감압 정지를 실시하면 감압 완료 카운터가 0부터 카운트하기 시작합니다.

15. 기체 변경

6. 특수 다이빙 모드

6.1. 게이지 모드

게이지 모드

게이지 모드에서 Petrel 3은 간단한 수심과 시간 표시(바닥 타이머라고도 함)를 나타냅니다.

게이지 모드에서 감압 조직은 추적되지 않으므로 게이지 모드에서 또는 게이지 모드로 변경하면 감압 조직이 초기화됩니다.

시스템 설정 > 모드 설정 메뉴에서 게이지 모드로 변경합니다. <u>71페이지</u>를 참조하세요.

게이지 모드 특징:

- 초대형 수심 디스플레이(미터 또는 피트)
- 초대형 시간 디스플레이(분:초)
- 메인 화면에 최대 및 평균 수심 표시
- 평균 수심 초기화 가능
- 스톱워치

게이지 디스플레이 구성:

- 왼쪽에 수심이 표시됩니다.
- 오른쪽에 시간이 표시됩니다.
- 수심 및 다이빙 시간을 상단 행에 표시합니다.

스톱워치

다이빙 시 스톱워치 시작 또는 중지가 첫 번째 메뉴 옵션입니다.

스톱워치를 중지하면 "스톱워치" 단어가 빨간색으로 표시됩니다.

0이 아닌 경우 스톱워치를 초기화할 수 있습니다. 초기화 동작은 상태에 따라 다릅니다.

- 초기화할 때 스톱워치가 실행 중이면 0에서 다시 카운트가 올라가며 계속 실행됩니다.
- 초기화할 때 스톱워치가 멈추어 있으면 0으로 설정되고 멈춘 상태가 유지됩니다.

평균 수심 초기화

다이빙 중에 평균 수심을 초기화할 수 있습니다.

수면에 있는 동안에는 MAX 및 AVG 값이 마지막 다이빙의 최대 및 평균 수심을 표시합니다. 수면에서 표시되는 AVG 수심은 전체 다이빙의 수심으로, 평균 수심 초기화 옵션의 사용 여부와는 관계가 없습니다. 다이빙 로그는 전체 다이빙의 평균 수심도 기록합니다.

PETREL·3 테크니컬 모드 사용 설명서

6.2. 반폐쇄식 모드 🔤

반폐쇄식 재호흡기 모드(SC/BO)는 몇 가지 중요한 방식에서 폐쇄식 모드(CC/BO)와 다르게 작동합니다.

- SC 모드는 외부 PPO2 모니터링만 허용합니다. 사용 가능한 내부(모니터링되지 않은) 설정값이 없습니다.
- SC 모드에서는 21% 산소만큼 낮은 기준 기체를 사용해 산소 센서를 보정할 수 있습니다. 반폐쇄식 재호흡기를 사용할 때는 순수한 산소 공급이 어려울 때가 많습니다.
- SC 모드를 사용하면 외부 센서를 통해 현재 PPO2를 표시하는 것 외에도 흡입한 산소(FiO2)의 농도를 표시할 수 있습니다.
- CC 모드와 마찬가지로 SC 모드에서는 1, 2 또는 3개의 외부 산소 센서를 사용할 수 있습니다.

SC 모드 - 보정

6.3. 베일아웃 재호흡기 모드 🔤 🎫

베일아웃 재호흡기 모드에서 예비 베일아웃 재호흡기와 함께 사용하면 Petrel 3의 기능이 향상됩니다.

다이브 모드가 CC/BO인 경우, PPO2 모드를 "BO CCR"로 설정할 수 있습니다(다른 옵션은 "Int" 및 "Ext").

BO CCR 옵션은 Int와 Ext의 조합입니다.

- 외부 PPO2 셀 측정값이 중앙 행에 표시됩니다.
- 그러나 루프 PPO2 판독값 위에 표시되는 내부 PPO2 설정값은 감압 및 CNS 계산에 사용됩니다.

이를 통해 BO CCR은 기본 CCR의 감압 스케줄을 따르지만, 다이버가 BO CCR로 호흡을 시작해야 하는 경우 현재 루프 PPO2을 계속 표시할 수 있습니다.

다이버가 BO CCR로 전환하는 경우 "CC"에서 "BO"로 전환해서는 안 됩니다(BO는 개방식 베일아웃이므로). 대신 PPO2가 내부 설정값에 가까우면 PPO2 모드를 "BO CCR" 로 둘 수 있습니다. 대부분의 상황에서는 이와 유사한 감압 스케줄이 만들어집니다. 최상의 감압 정확도를 위해 PPO2 모드를 "Ext"로 변경할 수 있습니다.

7. 나침반

Petrel 3에는 기울기 보정 디지털 나침반이 포함되어 있습니다.

나침반 기능

N 24 NE

- ±5° 정확도
- 고속 새로 고침
- 사용자 설정 진행 방향 및 역방향 표시
- 진북(기울기) 조절
- 기울기 보정 ±45°

나침반 보기

활성화되어 있으면 SELECT(오른쪽) 버튼을 한 번 누르면 나침반을 볼 수 있습니다. 일반 정보 화면을 보려면 SELECT(오른쪽)를 다시 누릅니다.

일반 정보 화면과 달리 나침반은 시간이 지나도 메인 화면으로 돌아가지 않습니다. MENU(왼쪽) 버튼을 눌러 메인 화면으로 돌아갑니다.

진행 방향 표시

진행 방향을 표시하려면 나침반을 보면서 MENU(왼쪽) 버튼을 누릅니다. "종료/표시" 메뉴가 나타납니다. SELECT(오른쪽) 단추를 눌러 진행 방향을 표시합니다.

표시한 진행 방향은 초록색 화살표로 표시됩니다.

역방향(표시된 진행 방향으로부터 180°)은 빨간색 화살표로 표시됩니다. 역방향으로부터 ±5° 이내이면 각도 표시가 빨간색으로 바뀝니다.

표시한 진행 방향에서 5°이상 떨어져 있으면 초록색 화살표가 표시한 진행 방향으로 가야 하는 방향을 나타냅니다.

또한 진행 방향과의 각도 차가 표시됩니다(예시 이미지의 경우 16°). 이 각도 차를 통해 잠수 패턴을 파악할 수 있습니다. 예를 들면, 사각형 패턴은 90°간격, 삼각형 패턴은 120°간격에서 회전해야 한다는 뜻입니다.

보정-디지털 나침반은 때때로 보정해야 합니다. 이 작업은 시스템 설정 ▶ 나침반 메뉴에서 수행할 수 있습니다. <u>자세한 내용은 78페이지를 참조하세요.</u>

배터리 교체 - 배터리를 교체하면 나침반을 보정해야 합니다.

간섭 - 나침반은 지구의 자기장을 판독하여 작동하기 때문에 나침반 방향은 이 자기장을 왜곡하거나 자체적으로 자기장을 띄는 요소에 의해 영향을 받을 수 있습니다. 강철 물체 및 전기 모터 또는 케이블(예: 다이빙 조명)과 일정한 거리를 유지해야 합니다. 난파선 가까이 있거나 내부에 있을 때도 나침반이 영향을 받을 수 있습니다.

자기 편각(또는 자기 편차)은 자성과 진북 간의 차이입니다. 이 값은 나침반 설정 메뉴에서 진북 설정을 사용하여 보정할 수 있습니다. 자기 편각은 국가 위치에 따라 다르므로 여행 시에는 재조정해야 합니다.

자기 기울기(또는 복각)는 지구의 자기장이 위 또는 아래로 얼마나 향하는지를 나타냅니다. Petrel 3의 나침반은 이 각도를 자동으로 보정합니다. 그러나 지구의 극 근처에서는 기울기 각도가 80°를 초과할 수 있으며(즉, 자기장이 거의 바로 위 또는 아래를 가리킴), 이러한 경우에는 정확도를 충족하지 않을 수 있습니다.

8. 공기 통합(Al)

Petrel 3에는 4트랜스미터 공기 통합 기능이 탑재되어 있습니다.

이 섹션에서는 AI 기능의 작동 방식을 소개합니다.

AI 특징

- 최대 4개의 탱크로 동시 무선 압력 모니터링
- 단위는 PSI 또는 Bar입니다.
- 탱크 1개를 기준으로 한 잔여 기체 시간(GTR)과 수면 공기 소비량(SAC) 비율
- SAC, GTR 및 잔여 여분 시간(RTR)에 사이드마운트 지원
- 사이드마운트 탱크 변경 알림
- 압력, GTR 및 SAC 기록
- 예비 및 위험 기체 압력 경고

8.1. AI란?

AI는 공기 통합을 의미합니다. Petrel 3에서 AI란 무선 트랜스미터를 사용하여 스쿠버 탱크의 기체 압력을 측정하고, 이 정보를 Petrel 3 다이브 컴퓨터로 전송하여 표시 및 기록하는 시스템을 말합니다.

데이터는 저주파수(38kHz) 무선 통신을 사용하여 전송됩니다. Petrel 3의 수신기가 이 데이터를 받은 뒤 구성하여 표시합니다.

통신은 한 방향으로 이루어집니다. 트랜스미터는 Petrel 3 에 데이터를 전송하지만, 다이브 컴퓨터는 트랜스미터로 데이터를 전송하지 않습니다.

Shearwater Swift 무선 트랜스미터

8.2. 기본 AI 설정

이 섹션에서는 Petrel 3에 탑재된 AI의 기본 사항을 소개합니다. 고급 설정 및 자세한 설명은 다음 섹션에서 다룹니다.

트랜스미터 설치

AI 시스템을 사용하기 전에 스쿠버 탱크 1단계 레귤레이터에 한 개 이상의 트랜스미터를 설치해야 합니다.

이 트랜스미터는 반드시 "HP"(고압)이라고 표시된 1단계 포트에 설치해야 합니다. 1단계 레귤레이터와 최소 2개의 HP 포트를 함께 사용해야 백업용 아날로그 수중 압력 게이지(SPG)를 사용할 수 있습니다.

백업용 SPG를 권장합니다

Petrel 3 핸드셋을 착용한 상태에서 트랜스미터를 신체와 같은 쪽에 놓습니다. 범위는 약 3 ft(1 m)로 제한됩니다.

수신 감도나 편한 사용을 위해 고압 호스를 사용하여 트랜스미터의 위치를 옮길 수 있습니다. 호스는 작동 압력이 300bar(4,500psi) 이상이어야 합니다.

있습니다.

트랜스미터를 1단계 HP 포트에 설치하기

트랜스미터를 핸드셋과 동일한 쪽에 장착하세요. 범위는 약 1m(3ft) 입니다.

PETREL·3 테크니컬 모드 사용 설명서

트랜스미터 켜기

탱크 밸브를 열어 트랜스미터를 켭니다. 트랜스미터가 압력을 감지하면 자동으로 켜집니다.

압력 데이터는 약 5초마다 전송됩니다.

트랜스미터 끄기

트랜스미터를 끄려면 탱크 밸브를 닫고 2단계 레귤레이터를 제거하여 호스에서 압력을 배출합니다. 트랜스미터는 2분 동안 가해지는 압력이 없으면 자동으로 전원이 꺼집니다.

Petrel 3에서 AI 켜기

Petrel 3에서 시스템 설정 > AI 설정으로 이동합니다. AI 모드 설정을 켜기로 바꿉니다.

AI Setup	
► AI Mode Units Tx Setup GTR Mode	On Bar T1 Off
Next	Edit

AI 모드가 끄기로 설정되어 있으면 AI 하위 시스템의 전원이 완전히 차단되어 전원이 전혀 소모되지 않습니다. 켜져 있으면 AI 시스템은 전력 소비를 약 10% 증가시킵니다.

AI는 Petrel 3가 꺼져 때는 절대 켜지지 않습니다.

자세한 내용은 <u>73페이지의 AI 설정 섹션</u>에서 확인하세요.

트랜스미터 페어링하기

각 트랜스미터의 본체에는 고유한 일련번호가 새겨져 있습니다. 모든 통신은 각 압력 판독 값의 출처를 식별할 수 있도록 이 번호로 코딩되어 있습니다.

Tx 설정 메뉴 옵션으로 이동하고 T1을 선택하여 트랜스미터를 페어링합니다. T1을 켠 다음 트랜스미터의 일련번호 6자리를 **T1 일련번호** 설정에 입력합니다. 일련버호는 설정 메모리에 영구적으로 저장되므로 한 번만 설정하면 됩니다.

Trar	<u>ismitte</u>	ers	Tank Setu	I D
#	On	Serial	▶ T1 Serial#	285817
▶T1	On	285817	Rated	207Bar
T2	Off	000000	Reserve	048Bar
Т3	Off	000000	Rename	T1
Τ4	Off	000000	Unpair	
lext	Setup	Edit	Next	Edi

PETREL·3 테크니컬 모드 사용 설명서

홈 화면에 AI 디스플레이 추가하기

AI 기능이 켜져 있으면 AI 정보가 자동으로 정보 화면으로 표시되지만, 메인 화면에는 AI 정보를 수동으로 추가하지 않으면 표시되지 않습니다.

테크니컬 다이빙 모드에서 시스템 설정 > 중앙 행 메뉴의 홈 화면에 AI를 추가합니다.

중앙 행은 폭넓은 맞춤 설정이 가능하여 다양한 정보를 표시할 수 있습니다.

중앙 행의 구성 방법은 75페이지에서 자세히 확인하세요.

탱크 밸브가 켜져 있는지 확인하려면 항상 물에 들어가기 전에 탱크 압력을 10~15초 동안 모니터링하면서 레귤레이터로 몇 번 호흡을 해보거나 레귤레이터의 2단계를 제거합니다.

1단계 레귤레이터가 충전되어 있지만 탱크 밸브가 닫혀 있으면 다이버가 사용할 수 있는 호흡 기체가 빠르게 줄어들어 단 몇 번의 호흡만으로 다이버는 "공기 부족" 상황에 처하게 됩니다. 아날로그 게이지와 달리 Petrel 3에 보고되는 공기 압력은 5초마다 업데이트되므로 탱크 밸브가 열려 있는지 확인하려면 압력을 5초 이상의 시간(권장 시간 약 10~15초) 동안 모니터링해야 합니다.

다이빙 전 안전 점검의 일환으로 물에 들어가기 전에 레귤레이터 제거 테스트 후 10~15초 동안 공기 압력 모니터링을 포함하는 것 또한 위험을 완화할 수 있는 방법입니다.

8.3. AI 디스플레이

이 섹션에서는 AI 정보를 표시하는 데 사용되는 디스플레이 필드 유형을 설명합니다. 디스플레이 유형은 다음과 같습니다.

- 1) 탱크 압력
- 2) SAC
- 3) GTR
- 4) RTR(사이드마운트만 해당)
- 5) AI 콤비네이션 디스플레이

탱크 압력

수면 공기 소비량

위 디스플레이들은 두 가지 방법으로 볼 수 있습니다. 1) 홈 화면의 사용자 지정 영역에 추가하기 2) 대부분은 AI 정보 화면에서 조회 가능

트랜스미터 이름 바꾸기

트랜스미터 이름은 트랜스미터 설정 메뉴에서 맞춤 설정할 수 있습니다. 따라서 어느 트랜스미터가 어떤 실린더 압력을 보고하는지 쉽게 알 수 있습니다.

각 트랜스미터 이름에는 2개의 문자를 사용하며, 모든 AI 디스플레이에 적용됩니다. 다음과 같이 사용 가능합니다.

첫 번째 문자: T, S, B, O 또는 D 두 번째 문자: 1, 2, 3 또는 4

4탱크 사이드마운트

이름 바꾸기는 디스플레이에 사용하기 위한 것입니다. 감압 계산과 관련하여 트랜스미터의 이름과 기체 농도는 아무런 관계가 없습니다.

압력 디스플레이는 현재 단위(psi 또는 bar)의 압력을 표시하는 가장 기본적인 AI 디스플레이입니다

각 압력 디스플레이의 상단에서 막대그래프가 압력을 그래픽으로 나타냅니다. 이 막대그래프는 0압력에서 정격 압력 설정까지 나타냅니다. 이 그래픽은 배터리 수준을 나타내는 것이 아닙니다.

탱크 압력 막대그래프

저압 경고:

예비압력 임계값은 AI 설정 메뉴에서 관리할 수 있습니다. 자세한 내용은 73페이지를 참조하세요.

통신 경고 없음:

lo Comm 번갈아 나타남

90초 이상 통신이 끊겼습니다

트랜스미터 배터리 부족 경고:

트랜스미터 배터리를 곧 교체해야 합니다

트랜스미터 배터리를 즉시

SAC 디스플레이

수면 공기 소비량(SAC) 디스플레이는 지난 2분 동안의 평균 압력 변화율을 1ATA 압력인 것처럼 정규화한 것입니다. 현재 단위 설정에 따라 SAC 는 psi/분 또는 bar/분 단위로 표시됩니다.

SAC는 탱크 한 개나 동일한 볼륨의 탱크 두 개의 사이드마운트 구성을 나타낼 수 있습니다.

분당 압력의 SAC는 크기가 다른 탱크끼리 바꿔쓸 수 없습니다.

SAC 계산에 사용 중인 트랜스미터의 이름이 진한 회색 글꼴로 나타납니다. "SM"은 사이드마운트 SAC가 선택되었다는 뜻입니다.

SAC 계산에 포함된 탱크는 AI 설정 메뉴<u>(73페이지)</u>에서 선택합니다.

다이빙 후 처음 몇 분 동안은 SAC 값을 사용할 수 없지만, 초기 데이터는 평균 계산을 위해 수집되고 있습니다. 이 시간 동안 SAC 디스플레이에는 "대기"라고 표시됩니다.

마지막 다이빙의 평균 SAC는 수면에 있을 때 표시됩니다. 다이빙을 끝냈을 때 SAC 값이 갑자기 바뀌는 것을 발견할 수 있습니다. 이는 SAC 디스플레이가 마지막 2분 동안의 SAC를 표시하다가 (다이빙 모드일 때) 전체 다이빙의 평균 SAC를 표시하는 것으로 변경되기 때문에 생기는 일입니다.

GTR 디스플레이

잔여 기체 시간 디스플레이는 예비 잔여 기체 압력으로 10m/분(33ft/분)의 속도로 수면으로 직접 상승할 때까지 현재 수심에서 머무를 수 있는 시간(분)을 표시합니다.

이 값은 5분 이하면 노란색으로 표시됩니다. 값이 2분 이하면 빨간색으로 표시됩니다.

GTR은 탱크 1개 또는 사이드마운트를 선택했을 때는 동일한 용량의 탱크 2개를 기준으로 사용할 수 있습니다.

GTR 계산에 사용 중인 트랜스미터의 이름이 진한 회색 글꼴로 나타납니다. "SM"은 사이드마운트 GTR가 선택되었다는 뜻입니다.

수면에 있을 때는 GTR이 "---"라고 표시됩니다. 감압 정지가 필요할 때는 GTR이 표시되지 않고 "감압"으로 표시됩니다.

각 다이빙의 처음 30초 동안의 SAC 데이터는 삭제됩니다. 그리고 몇 분 뒤 평균 SAC를 계산합니다. 따라서 각 다이빙의 처음 몇 분 동안 GTR은 GTR 예측을 시작하기에 충분한 데이터가 수집될 때까지 "대기"라고 표시합니다.

GTR 계산 방식에 관한 자세한 내용은 <u>50페이지의 GTR</u> <u>계산 섹션</u>을 참조하세요.

PETREL·3 테크니컬 모드 사용 설명서

잔여 여분 시간(RTR) 디스플레이는 낮은 압력 (즉, 고압 탱크의 모든 기체가 손실됨)으로 사이드마운트 탱크의 압력만 사용하여 계산할 때 기체 시간이 얼마나 남았는지를 나타냅니다.

RTR과 GTR에는 모두 동일한 규칙이 적용되고 정확히 동일한 방식으로 계산됩니다.

현재 RTR 계산에 사용 중인 탱크는 진한 회색으로 나타납니다.

AI 콤비네이션 디스플레이

AI 콤비네이션 디스플레이는 자동으로 AI 정보 행을 실행하여 좁은 공간에 더 많은 정보를 표시합니다. AI 콤비네이션의 형식은 AI 설정에 따릅니다. 몇 가지 예시를 아래에서 볼 수 있습니다. 이외에도 다양한 방식의 디스플레이를 만들 수 있습니다.

홈 화면에 AI 디스플레이를 배치하는 방법은 <u>75페이지</u>의 중앙 행 메뉴 섹션을 참조하세요.

GTR, RTR, SAC는 공간 제약으로 인해 어떤 탱크를 나타내는지 표시되지 않습니다.

AI 설정		디스플레0)	
Tx Setup GTR Mode	T1 T1	T1 210 Å	gtr ti 45	SAC T1 1 1 Bar min
Tx Setup T GTR Mode S	1 T2 M:T1+T2	T1 210 Å	GTR 45 SM SAC 1.1	T2 207 ^B
Tx Setup T1 GTR Mode S	T2 T3 T4 M:T1+T2	T1 210 T2 207	GTR 45 SM SAC 1.1	T3 198 T4 180

8.4. 사이드마운트 AI

Petrel 3은 사이드마운트 다이빙을 하는 동안 기체 추적을 편리하게 할 수 있는 기능을 제공합니다. 그 기능은 다음과 같습니다.

- 사이드마운트 탱크 변경 알림

- 사이드마운트 SAC 계산 - 사이드마운트 GTR 및 RTR

GTR 모드 옵션을 원하는 SM 조합으로 설정하면 AI 설정 메뉴에서 모든 사이드마운트 기능을 활성화할 수 있습니다.

사이드마운트에 동일한 탱크 사용하기

사이드마운트 기능은 사이드마운트 탱크의 용량이 동일하다고 가정합니다. 그러면 탱크 용량을 다이브 컴퓨터에 입력할 필요가 없으므로 사용자 인터페이스가 간소화되고 입력 오류가 발생할 가능성이 줄어듭니다.

용량이 다른 탱크를 사용할 때는 사이드마운트 AI 기능을 사용하지 마세요.

사이드마운트 탱크 변경 알림

사이드마운트 기능이 활성화되면 호흡해야 하는 탱크 라벨을 강조하는 초록색 상자가 생기며 탱크가 변경되었다고 알려줍니다. 이는 탱크 압력 차이가 SM 변경 설정 이상으로 높아질 때 탱크를 전환하라는 뜻이기도 합니다.

변경 알림 설정의 범위는 7bar~69bar 또는 100psi~999psi 입니다.

사이드마운트 SAC 및 GTR

사이드마운트 SAC 및 GTR은 단일 탱크 SAC 및 GTR 을 계산할 때와 동일한 방식을 사용하지만, 각 계산 전에 탱크 압력이 공유된다는 점은 계산에 포함되지 않습니다. 기본적으로 두 탱크를 하나의 큰 탱크로 취급합니다.

사이드마운트 SAC 및 GTR을 계산하는 방식은 두 개의 사이드마운트 탱크가 동일한 용량이라는 가정을 두고 이루어집니다.

SAC 비율은 용량이 다른 탱크끼리 바꿔쓸 수 없습니다. 다양한 탱크 구성 전반에서 기체 소비량을 비교하려면 SAC 를 RMV로 변환해야 합니다.

사이드마운트 SAC를 사용한 RMV 계산의 경우 <u>49페이지의</u> SAC 계산 섹션에 나와 있는 단일 탱크에 관한 설명과 동일한 절차를 따르되, 대형 탱크 1개를 사용하는 것처럼 모든 관련 탱크 속성을 함께 추가합니다.

총 부피 = 용량태기 + 용량태기

총 정격 압력 = 정격 압력 맹크1 + 정격 압력 맹크2

트랜스미터를 여러 대 사용할 경우, 수신 신뢰성을 높이려면 전송 간격이 다른 트랜스미터를 사용하거나 Shearwater Swift 트랜스미터와 같이 충돌 방지 기능이 있는 트랜스미터를 사용하면 됩니다.

전송 간격이 동일한 트랜스미터를 두 개 사용하면 통신 타이밍이 동기화될 수 있습니다. 이 경우 데이터 누락이 발생할 수 있으며 이러한 현상은 최대 20분 이상 지속될 수 있습니다.

색상이 다른 기존의 Shearwater 트랜스미터들은 각각 전송 타이밍이 다릅니다. 이러한 방식으로 연결이 끊기는 통신 충돌을 줄입니다.

두 대 이상의 트랜스미터를 사용한다면 주변 트랜스미터를 능동적으로 '수신'하면서 간섭 방지를 위해 전송 타이밍을 동적으로 변경하는 Swift 트랜스미터를 권장합니다.

동시에 실행할 수 있는 Swift 트랜스미터 수에는 제한이 없습니다. 자세한 내용은 Swift 사용 설명서를 참조하세요.

• 전송 간격이 동일한 여러 대의 트랜스미터를 사용하면 통신이 끊길 수 있습니다

두 대 이상의 트랜스미터를 사용할 때는 간섭을 방지하기 위해 자동 충돌 방지 기능이 있는 트랜스미터나 기존 트랜스미터 중 색상이 다른 트랜스미터를 사용하세요(위 참조).

8.6. SAC 계산

수면 공기 소비량(SAC)은 **탱크 압력의 변화율**이며, 마치 1 대기압인 것처럼 정규화한 것입니다. 단위는 psi/분 또는 bar/ 분입니다.

Petrel 3은 지난 2분 동안의 평균 SAC를 계산합니다. 다이빙 후 처음 30초 동안의 데이터는 이때 일반적으로 사용되는 추가 기체(팽창 BCD, 윙 또는 드라이 수트)를 무시하기 위해 계산에서 제외됩니다.

SAC와 RMV 비교

SAC는 단순히 탱크 압력 변화율을 기반으로 하기 때문에 계산하는 데 탱크 크기를 알 필요는 없습니다. 그러나 다시 말하면 이 SAC를 다른 크기의 탱크에서 쓸 수 없다는 뜻이기도 합니다.

이와 반대로 분당 호흡량(RMV)은 폐가 분당 호흡하는 기체의 용량으로 측정(단위: Cuft/분 또는 L/분)됩니다. RMV는 개인별 호흡률을 나타내므로 탱크 크기와 무관합니다.

RMV 대신 SAC를 선택해야 하는 이유

RMV는 크기가 다른 탱크 간에 바꿔쓸 수 있는 특성이 있기 때문에 GTR 계산을 기반으로 한 RMV가 더 나은 선택지로 보입니다. 그러나 RMV를 사용할 때의 주된 단점은 각 탱크의 크기를 올바르게 설정해야 한다는 점입니다. 이러한 설정은 잊어버리기 쉽고 잘못 설정하기도 쉽습니다.

반대로 SAC는 별도의 설정이 필요 없는 특성이 있어 가장 간단하고 가장 믿을 수 있는 선택지입니다. 단점은 크기가 다른 탱크 간에는 SAC를 바꿔쓸 수 없다는 점입니다.

SAC 공식

SAC =

SAC는 다음과 같이 계산됩니다.

시간 샘플은 2분 간격으로 획득되며, P_{amb,ATA}는 이 시간 동안의 평균 주변 압력(예: 수심)입니다.

Petrel 3이 SAC를 표시하고 로깅하므로 SAC로 RMV를 계산하는 공식을 알아두면 유용합니다. RMV를 알면 다양한 크기의 탱크를 사용하는 다이빙을 계획할 수 있습니다.

SAC로 RMV 계산하기 - 야드파운드 단위

야드파운드 체계에서 탱크 크기는 두 가지 값, 즉 psi의 정격 압력일 때 Cuft(입방 피트)의 용량으로 나타냅니다.

예를 들어, 일반적인 탱크 크기는 3,000psi에서 80Cuft 입니다.

[psi/분]의 SAC를 [Cuft/분]의 RMV로 변환하려면 psi당 Cuft가 얼마나 많이 저장되어 있는지 계산한 다음 SAC를 곱하여 RMV를 구합니다.

예를 들어 80Cuft 3,000psi 탱크를 사용하는 23psi/분의 SAC로 RMV를 구하면 (23 x (80/3000)) = 0.61Cuft/ 분입니다.

SAC로 RMV 계산하기 - 미터 단위

미터법 체계에서 탱크 크기는 탱크의 물리적 크기(리터 단위)를 단일 숫자로 나타냅니다. 이는 1bar의 압력에 저장할 수 있는 기체의 양을 나타내며, 탱크 크기의 단위는 [L/bar]가 됩니다.

따라서 SAC를 RMV로 쉽게 변환할 수 있습니다. 미터법 단위를 사용하는 경우에는 SAC에 탱크 크기를 곱하기만 하면 됩니다.

예를 들어 10L 탱크를 사용하는 2.1bar/분의 SAC로 RMV를 구하면 (2.1 x 10) = 21L/분입니다.

8.7. GTR 계산

잔여 기체 시간(GTR)은 예비 압력으로 10m/분(33ft/분)의 속도로 수면으로 직접 상승할 때까지 현재 수심에서 머무를 수 있는 시간(분)을 표시합니다. 이 값은 현재 SAC 값을 사용하여 계산됩니다.

안전 정지 및 감압 정지는 GTR 계산에 고려되지 않습니다.

GTR을 계산하려면 현재 탱크 압력, P_{탱코}부터 시작합니다. 잔여 기체 압력, P_{잔여}는 예비압력과 상승에 사용되는 압력을 빼서 결정합니다.

P_{잔여} = P_{탱크} - P_{예비} - P_{상승} , 모든 탱크 압력은 [psi] 또는 [bar]

이 *P_{잔여}* 를 분당 GTR을 얻기 위해 현재 주변 압력에 맞게 조정된 SAC로 나눕니다.

 $GTR = P_{\text{Troy}} / (SAC \times P_{amb,ATA})$

GTR 계산에 안전 정지가 포함되지 않는 이유

GTR 계산에 안전 정지를 넣지 않는 이유는 GTR의 의미를 단순화하고 안전 정지를 포함하지 않는 작동 모드 간에 일관성을 유지하기 위해서입니다.

안전 정지에 충분한 기체를 확보하는 일은 매우 간단합니다. 안전 정지에는 필요한 기체 양이 상대적으로 적기 때문입니다. 예를 들어 SAC가 1.4bar/분(20psi/분)인 경우, 4.5m/15ft 수심의 압력은 1.45ATA입니다. 따라서 3분간의 안전 정지에 사용되는 기체의 양은 1.4 x 1.45 x 3 = 6.1bar(87psi)입니다. 이 소량의 기체는 예비 압력 설정에 쉽게 영향을 줍니다.

GTR이 무감압에 제한되는 이유

현재 Shearwater는 GTR이 감압 다이빙에 적절한 도구라고 믿지 않습니다. 특히 여러 기체를 수반한 경우에는 더욱 그렇습니다. 일반적으로 AI가 모든 테크니컬 다이빙에 적합하지 않다는 말은 아닙니다. 하지만 GTR 기능은 여러 기체를 사용할 때 이를 관리하고 이해하기가 점점 더 복잡해지고 있습니다. 전반적으로, 사용자가 숙지해야 하는 메뉴와 설정이 복잡하면 시스템 사용 시 실수와 오용이 발생할 수 있는데 이러한 방식은 Shearwater의 설계 철학에 부합하지 않습니다.

기체 관리는 매우 중요하고 복잡한 활동으로, 특히 테크니컬 다이빙에서는 그 중요성이 매우 큽니다. 테크니컬 다이빙에 맞는 적절한 기체 관리를 하려면 교육, 훈련 및 계획이 필수적입니다. Shearwater는 GTR과 같은 편의 기능이 가진 복잡성과 오용 가능성이 그 유용성보다 더 크기 때문에 테크니컬 다이빙에는 적합하지 않다고 생각합니다.

이상 기체 법칙 편차에는 보상이 없습니다

모든 SAC 및 GTR 계산은 이상 기체 법칙이 유효하다고 가정합니다. 이로 인해 약 207bar(3,000psi)까지 양호한 근사치입니다. 이 압력보다 높은 압력에서는 압력 증가에 따른 기체 압축률 변화가 눈에 띄게 달라집니다. 이는 주로 300bar 실린더를 사용하는 유럽 다이버들에게 문제가 됩니다. 그 결과는 다이빙의 초기 단계에 일어납니다. 압력이 207bar/3,000psi를 초과하면 SAC가 과대 평가되어 GTR이 과소 평가됩니다(이렇게 되면 더 보수적인 설정이 되므로 불행 중 다행인 오류입니다). 다이빙이 진행되면 압력이 떨어지면서 문제가 해결되고 수치가 정확해집니다.

8.8. 트랜스미터 연결 문제

"통신 끊김" 오류가 나타나면 다음 단계를 따릅니다.

"통신 끊김"이 지속되는 경우:

- AI 설정 트랜스미터 설정 메뉴에 올바른 일련번호가 입력되어 있는지 확인합니다.
- 트랜스미터 배터리가 방전되지 않았는지 확인합니다.
- 트랜스미터를 1단계에 연결하고 탱크 밸브를 켜서 트랜스미터가 켜져 있는지 확인합니다. 3.5bar(50psi) 이상의 고압을 가하는 것만이 트랜스미터를 켜는 유일한 방법입니다.

Swift 트랜스미터의 표시등이 깜박이며 전송 중임을 나타냅니다.

모든 호환 트랜스미터는 2분 동안 가해지는 압력이 없으면 전원이 꺼집니다.

• 핸드셋을 트랜스미터의 범위(1m/3ft) 내에 놓습니다. 트랜스미터가 너무 가까이 있어도(5cm/2인치 미만) 통신이 끊길 수 있습니다.

"통신 끊김"이 간헐적으로 발생하는 경우:

- HID 조명, 스쿠터, 수트히터 또는 사진 플래시 같이 무선 주파수(RF) 간섭원이 있는지 찾아봅니다. 이러한 원인을 제거하고 연결 문제가 해결되는지 확인합니다.
- 트랜스미터에서 핸드셋까지의 거리를 확인합니다.
 다이빙 중에 범위에서 벗어나는 일이 발생하는 경우
 트랜스미터를 짧은 고압 호스에 연결하면 트랜스미터와
 핸드셋 간의 거리를 줄일 수 있습니다.
- 다이브 컴퓨터 범위 내에 기존 트랜스미터나 타사 호환 트랜스미터가 한 개 이상 있다면 간섭을 최소화하기 위해 각 트랜스미터(회색 및 노란색 트랜스미터)의 전송 타이밍이 서로 다르게 설정되어 있는지 확인하세요. 이 경우에는 일반적으로 Shearwater Swift 트랜스미터가 문제의 원인이 아닙니다.

Ŧ

9. 메뉴

메뉴에서는 작업을 수행하고 설정을 변경할 수 있습니다.

아무 버튼이나 10초 동안 누르지 않으면 시간이 초과되어 메뉴 시스템이 메인 화면으로 돌아갑니다. 이전에 저장한 모든 내용은 그대로 유지됩니다. 편집 중이던 내용은 모두 삭제됩니다.

Petrel 3의 메인 메뉴에 들어가려면 메인 화면의 왼쪽 (MENU) 버튼을 사용합니다.

메인 메뉴의 항목은 모드마다 다르며, 수면에 있거나 다이빙 중일 때도 다릅니다. 가장 일반적으로 사용되는 메뉴 항목은 메인 메뉴에 우선 배치하여 버튼 조작을 줄였습니다.

다음 섹션에서는 각 항목에 대해 자세히 설명합니다.

폐쇄식(내부 PPO2) 메뉴 구조

메인 메뉴

폐쇄식(외부 PPO2) 메뉴 구조

게이지 메뉴 구조

메인 메뉴

9.2. 메인 메뉴 설명

끄기

"끄기" 항목은 컴퓨터를 절전 상태로 만듭니다. 절전 상태에서는 화면이 표시되지 않지만, 반복 다이빙을 위해 감압 조직 콘텐츠는 유지됩니다. 이 "끄기" 메뉴 항목은 다이빙 중에는 나타나지 않습니다. 다이빙 후에도 연속 다이빙을 허가하는 **다이빙 종료 연기** 시간(60초)이 만료될 때까지 나타나지 않습니다.

다이빙 종료

이 메뉴 항목은 다이빙 모드에서 수면에서의 "끄기" 항목이 있던 위치에 나타납니다.

Petrel 3은 수면에서 1분 이상 보내면 자동으로 다이빙 모드를 종료합니다. 이 메뉴 명령을 사용하여 다이빙 모드를 더 빨리 종료할 수 있습니다.

타이머 시작/타이머 정지(스톱워치)

이 메뉴 항목은 메인 화면에 타이머가 추가된 경우에만 나타납니다. 게이지 모드에서는 항상 사용할 수 있습니다.

타이머 초기화

이 메뉴 항목은 타이머가 0이 아닐 때만 나타납니다. 타이머가 실행 중이면 0으로 초기화되고 계속 실행됩니다.

설정값변경 CC한정

이 메뉴는 내부(int) PPO2 설정값이 있는 CC 모드에서만 사용할 수 있습니다.

폐쇄식 다이빙의 경우 Petrel 3은 내부 PPO2 모드에서 작동합니다. 이 모드는 연결되지 않은 재호흡기에 맞춰 감압을 계산하는 데 사용됩니다.

설정값 변경 메뉴는 하한(기본값 0.7) 및 상한(기본값 1.3) 설정값 사이로 변경하는 데 사용됩니다. 이 설정값은 모드 설정 메뉴에서 재호흡기 설정값에 근접한 값으로 변경할 수 있습니다.

다이빙 중에는 "끄기" 디스플레이가 비활성화되기 때문에 " 설정값 변경" 메뉴 항목이 첫 번째로 표시됩니다.

이 메뉴 항목이 표시될 때 SELECT를 누르면 PPO2 설정값이 하한 설정값에서 상한 설정값으로 또는 그 반대로 바뀝니다. 다이빙 중에 설정값의 PPO2 값을 다시 정의하려면 다이빙 설정 메뉴를 사용합니다.

이 메뉴 항목은 PPO2 설정값을 수동으로 변경합니다. Petrel 3은 <u>시스템 설정 > 자동 SP 변경</u> 메뉴에서 프로그래밍한 수심으로 설정값이 자동 변경되게 설정할 수 있습니다. 자동 설정값 변경이 활성화된 경우에도 이 메뉴 항목에서 수동 제어가 가능합니다.

보정 메뉴는 PPO2 모드가 외부로 설정된 CC 모드일 때만 나타납니다 이 메뉴는 산소 센서의 mV 출력을 PPO2로 보정합니다.

Cal. millivolts

46

46

Cance

25

62

Calibrate

보정 메뉴를 선택하면 화면에 다음 내용이 표시됩니다.

상단 행:

3개의 O2 센서를 통한 밀리볼트

(mV) 판독값. **가운데 행:**

PPO2 값(이전의 보정 사용). 하단행: 보정 기체 O2 농도(FO2).

보정 기체 FO2를 변경해야 하는 경우 시스템 설정의 O2 설정 메뉴에서 변경합니다.

호흡 루프에 보정 기체(일반적으로 순산소)를 주입한 후 SELECT 버튼을 눌러 보정을 실시합니다.

양호한 센서는 100% 산소일 때 해수면에서 35~65mV 범위에 있어야 하므로, 30mV~70mV 범위에 있지 않으면 센서가 보정에 실패합니다. 이 허용 범위는 FO2 및 기압의 변화에 따라 자동으로 조정됩니다. 밀리볼트 판독값은 허용 범위를 벗어나면 노란색으로 표시됩니다. 보정이 완료되면 보고서가 표시됩니다. 보고서는 보정을 통과한 센서와 기압 및 FO2에 따른 예상 PPO2 값을 표시합니다.

메인 화면으로 돌아오면 디스플레이에 예상 PPO2 가 모두 표시됩니다. 예를 들어, FO2가 0.98이고 기압이 1013mbar(1ata)인 경우 PPO2는 0.98이 됩니다. 디스플레이에 실패라고 표시되면 mV 판독값이 범위를 벗어났기 때문에 보정에 실패한 것입니다.

이 "보정" 메뉴 항목은 다이빙 중에는 나타나지 않습니다.

PETREL·3 테크니컬 모드 사용 설명서

단일 센서 모드 🛛 🗖 🗖 🗖 🗖 🗖 🗖 🗖 🗖 🗖

하나의 외부 O2 센서를 사용할 수 있습니다.

이 모드로 들어가려면 중간 센서(센서 #2)만 연결된 상태에서 보정을 실시합니다.

Petrel은 센서가 하나만 연결되어 있는지 확인한 후 자동으로 단일 센서 모드로 전환합니다.

이중 센서 모드 🔤 🖬 🗖

외부 PPO2 모니터링도 2개 센서를 지원합니다.

센서 #1과 #2만 연결된 상태에서 PPO2 보정을 실시하여 이중 센서 모드에 접근합니다.

이중 센서 모드를 사용할 때 화면 오른쪽에 구성 가능한 값이 표시됩니다.

보팅 통과

센서가 20% 이내이면 보팅을 통과하고 두 센서의 평균 PPO2가 감압 및 CNS 계산에 사용됩니다.

보팅 실패

두 센서의 차이가 20% 이상이면 보팅 통과에 실패한 것입니다.

실패한 센서는 노란색으로 표시됩니다(0.4 이하 또는 1.6 이상이 아닌 경우 빨간색으로 표시됨).

PPO2 디스플레이가 "보팅 실패"로 바뀝니다.

낮은 PPO2 값은 감압 계산에 사용됩니다.

높은 PPO2 값은 CNS 계산에 사용됩니다.

보정 문제 🔤 🖬 🗖 🗖 🗖 🗖 🗖 🗖 🗖

보정 후 1개의 센서가 실패로 표시되는 경우

이는 불량 센서를 나타내는 것일 수 있습니다. mV 출력이 범위를 벗어났기 때문에 실패한 것입니다. 센서가 오래되었거나 손상되었을 수 있으므로 센서를 점검해야 합니다. 와이어 또는 커넥터의 손상 및 부식은 자주 일어나는 문제입니다. 다이빙하기 전에 문제를 해결하고 다시 보정하세요.

보정 후 모든 센서가 실패로 표시되는 경우

이는 실수로 케이블이 뽑혔거나 케이블 또는 커넥터가 손상된 경우에 발생할 수 있습니다. 또한, 공기로 잘못 보정하거나 산소 주입이 제대로 되지 않아도 이 문제가 발생할 수 있습니다. 실패한 보정은 성공적인 보정을 실시해야만 해결될 수 있습니다.

보정 후 PPO2가 0.98을 표시하지 않는 경우

해수면에서 보정 FO2 설정을 0.98로 사용할 때는 보정된 PPO2가 0.98로 표시될 것이라고 예상하게 됩니다. 경우에 따라 0.96 또는 1.01과 같은 다른 값이 올바른 값으로 표시될 수 있습니다.

TIME

PRESSURE mBar

00

96

SURFACE

그 이유는 날씨가 기압에 경미한 변화를 주기 때문입니다. 예를 들어, 저압 기상 시스템이 정상 (1013mbar) 기압을 990mbar 로 줄였다고 가정해 보겠습니다. 절대 대기에서 PPO2는 0.98*(990/1013) = 0.96 입니다.

이 경우 PPO2의 결과가 0.96인 것이 맞습니다. 높은 고도에서 FO2와 PPO2의 차이는 더욱 커집니다. 현재 압력을 보려면

메인 화면에서 SELECT 버튼을 몇 번 누릅니다(압력 mBar 가 "지금"으로 표시됨).

DEPTH

Doc. 11301-Tec-RevB (2022-05-25)

기체 선택

이 메뉴 항목을 사용하여 다이버가 만든 기체 중에서 원하는 기체를 선택할 수 있습니다. 선택한 기체는 개방식 및 베일아웃 모드의 호흡 기체 또는 폐쇄식 모드의 희석 기체로 사용됩니다.

기본적으로 클래식 기체 선택 메뉴가 활성화됩니다.

왼쪽에서 오른쪽으로 각 기체의 기체 번호, 회로 모드(OC 또는 CC), 켜기 또는 끄기, 산소 및 헬륨의 농도를 표시합니다.

기체는 항상 산소 함유량이 가장 적은 것으로 분류됩니다.

왼쪽(다음) 버튼을 사용하여 원하는 희석 기체/기체로 높인 다음 오른쪽(SELECT) 버튼을 눌러 해당 희석 기체/기체를 선택합니다.

Next Se1 기체 1, 활성 기체, 21% 02

기체 3. 꺼짐, 18% O2, 50% He

현재 활성 기체 옆에 'A' 기호가 나타납니다. 이 기체는 조직 구획 업데이트에 사용됩니다.

꺼져 있는 기체는 보라색으로 표시되지만 선택이 가능합니다. 해당 기체를 선택하면 자동으로 켜집니다.

꺼져 있는 기체는 감압 계산에 사용되지 않습니다. 켜져 있는 모든 기체는 감압 계산에 적절하게 사용됩니다. 자세한 내용은 30페이지의 감압 정보 정확도 섹션을 참조하세요.

사용 가능한 기체 수를 넘어서 높이면 디스플레이가 "기체 선택" 밖으로 나가집니다.

라디오 방송 기체

폐쇄식 모드에서 시스템은 두 가지 기체 세트를 유지합니다. 하나는 개방식(베일아웃)용이고 다른 하나는 폐쇄식용입니다.

이 작동 방식은 차량용 라디오의 AM 및 FM 방송과 매우 비슷합니다.

FM 방송을 듣고 있을 때 방송 선택 버튼을 누르면 다른 FM 방송으로 바뀝니다. 새 방송을 추가하면 FM 방송이 됩니다.

마찬가지로 AM 모드에 있는 경우 방송을 추가하거나 삭제하면 AM 방송이 추가되거나 삭제됩니다.

이를 기체에 적용하면, 개방식일 때 기체를 추가, 삭제 또는 선택하면 이 기체는 개방식 기체가 됩니다. 라디오가 FM 모드에 있을 때 FM 방송을 선택하는 것과 마찬가지로 폐쇄식 기체는 폐쇄식 모드에서 사용할 수 있습니다. 개방식으로 변경하면 사용 가능한 기체는 개방식 기체가 됩니다.

PETREL·3 테크니컬 모드 사용 설명서

기체는 자동으로 꺼지지 않습니다

꺼져 있는 새 기체를 선택하면 켜지지만, 기체가 자동으로 꺼지지는 않습니다.

정확한 감압 정보를 받으려면 기체 정의 메뉴의 다이빙에서 운반하지 않을 모든 기체를 끄거나 계획에 넣지 않습니다.

기체 선택 메뉴 스타일 옵션

기체 선택 메뉴에는 "클래식"(기본값) 및 "새로운"의 두 가지 유형이 있습니다.

고급 설정1 메뉴에서 두 스타일 중에 선택할 수 있습니다. 자세한 내용은 <u>80페이지</u>를 참조하세요.

클래식 스타일의 기체 선택

이전 페이지에서 설명했듯이 기체

선택의 기본 스타일은 클래식 스타일입니다.

요약:

- 한 번에 하나의 기체가 표시됩니다.
- 다음을 눌러 기체를 스크롤하고 Select(선택) 를 눌러 표시된 기체 중에서 선택합니다.
- 기체는 최고 O2%에서 최저 O2%로 분류됩니다.
- 마지막 기체를 지나 스크롤하면 활성 기체를 변경하지 않고 메뉴가 종료됩니다.

PP02

클래식 스타일의 기체 선택 메뉴

2n45m

60

새로운 스타일의 기체 선택

새로운 스타일에서는 기체 목록을 보다 쉽게 시각화할 수 있습니다. 또한 감압 기체를 변경할 때 버튼을 누르는 횟수도 줄입니다.

요약:

- 화면에 모든 기체를 한 번에 표시합니다.
- 다음을 눌러 기체를 스크롤하고 Select(선택)를 눌러 화살표가 지목한 기체로 선택합니다.
- 메뉴를 종료하려면 기체를 선택해야 합니다(마지막 기체를 지나 스크롤하면 처음 기체로 돌아갑니다).
- 활성 기체는 초록색 배경으로 표시됩니다.
- 꺼진 기체는 자홍색(보라색)
 으로 표시됩니다.
- 기체는 최고 O2%에서 최저 O2%로 분류됩니다.
- 다이빙 중에 감압 정지가 있을 때 맨 처음 지목된 기체가 가장 적합한 기체입니다(가장 높은 PPO2가 1.61 미만). 이렇게 하면 대부분의 경우에서 버튼 누르는 횟수를 줄일 수 있습니다.
- 수면 위나 감압 정지가 필요하지 않은 경우에는 첫 번째로 지목된 기체가 활성 기체가 됩니다.

새로운 스타일의 기체 선택 메뉴의 레이아웃. 현재 5가지 기체가 프로그래밍되어 켜져 있습니다.

50% O2가 꺼져 있습니다. 50%로 변경하기를 선택하여 기체를 켭니다.

21% O2가 현재 활성 기체입니다. 메뉴를 종료하면 아무것도 변경되지 않습니다.

CC/BO로 변경 CC한정

1.3

SURFACE

9.3. 다이빙 설정

모든 다이빙 설정 메뉴는 수면 및 다이빙 시 모두 사용할 수 있습니다.

다이빙 설정의 값은 시스템 설정 메뉴에서도 접근할 수 있지만. 시스템 설정 메뉴는 다이빙 중에는 사용할 수 없습니다.

오른쪽(SELECT) 버튼을 누르면 다이빙 설정의 하위 메뉴로 들어갑니다.

이 항목에서는 하한 설정값 값을 편집할 수 있습니다. 처음에는 현재 선택된 값이 표시됩니다.

오른쪽(편집) 버튼을 눌러 편집 디스플레이를 엽니다. 왼쪽(변경) 버튼을 눌러 설정값을 높입니다.

Chande 변경 버튼을 눌러 설정값을 높입니다

허용되는 값은 0.4~1.5 사이입니다. 1.5보다 높이면 0.4

로 값이 돌아갑니다. 오른쪽(저장) 버튼을 눌러 새로운 하한 설정값을 잠급니다.

상한 설정값 편집

위의 하한 설정값 편집 기능과 방식이 동일합니다.

CC 모드의 메뉴 모양

DEPTH TIME

0.0

현재 컴퓨터 설정에 따라 이 선택은 "CC > BO로 변경" 또는 "BO > CC로 변경"으로 표시됩니다.

이 메뉴 항목은 CC/BO 모드에서만 사용할 수 있습니다

DEPTH TIME

BO 모드의 메뉴 모양

0.0

SURFACE

2n45m

BO

->

오른쪽(SELECT) 버튼을 누르면 감압 계산을 위해 모드가 변경됩니다. 다이빙 중에 베일 아웃으로 변경하면 가장 적절한 베일 아웃 기체가 호흡 기체가 되고 계산에 사용됩니다.

이 시점에서 다이버는 다른 기체로 변경하기를 원할 수도 있지만 다이버에게 다른 문제가 있을 수 있기 때문에 컴퓨터는 다이버들이 선택할 기체에 대해 "최선의 추측"을 합니다.

외부 PPO2 모니터링이 활성 상태일 때 BO 모드로 변경하면 외부 PPO2가 메인 화면에 계속 표시됩니다. 감압 계산에 사용되는 시스템 PPO2가 OC 모드로 변경됩니다.

센서 입력이 시스템 PPO2로 사용되지 않더라도 다이버가 루프로 돌아가야 하고 루프의 PPO2 상태를 알아야 하기 때문에 외부 PPO2는 계속 표시됩니다.

기체 정의 기능에서는 폐쇄식에 기체 5개, 개방식에 기체 5 개를 설정할 수 있습니다. 개방식 기체를 편집하려면 개방식 모드여야 하며, 폐쇄식 희석 기체를 편집하려면 폐쇄식 모드여야 합니다. 기체마다 기체 내 산소 및 헬륨의 백분율을 선택할 수 있습니다. 나머지 비율은 질소로 간주됩니다.

오른쪽(정의) 버튼을 누르면 기체 번호 1을 정의하는 기능이 나타납니다.

왼쪽(다음) 버튼을 누르면 다음 기체로 올라갑니다.

오른쪽(편집) 버튼을 눌러 기체를 편집합니다.

첫 번째 옵션은 밑줄이 그어진 것처럼 기체를 켜거나 끕니다. 왼쪽(변경) 버튼을 사용하여 기체를 켭니다

계속해 보면 기체 내용이 한 번에 한 자리씩 편집됩니다. 밑줄은 편집 중인 숫자를 나타냅니다.

왼쪽(변경) 버튼을 누를 때마다 편집 중인 숫자가 높아집니다. 숫자가 9에 도달하면 0으로 돌아갑니다.

오른쪽 버튼(다음)을 누르면 현재 숫자가 잠기고 다음 숫자로 이동합니다.

변경을 눌러 기체를 켭니다

밑줄이 그어진 숫자를 높이려면 변경을 누릅니다

편집 중인 항목을 나타내는 표시는 하단 중앙에 있습니다.

마지막 숫자에 있는 오른쪽(저장) 버튼을 누르면 해당 기체 편집이 완료되고 기체 번호로 돌아갑니다. 왼쪽(다음) 버튼을 눌러 기체를 계속 높일 수 있습니다.

"A"는 활성 기체를 나타냅니다. 기체 정의 메뉴에서는 활성 기체를 끌 수 없습니다. 삭제를 시도하면 오류가 발생합니다. 편집은 가능하지만 O2와 HE 모두를 00으로 설정할 수는 없습니다.

"He%" 표시는 헬륨 농도가 편집 중임을 나타냅니다

마지막 숫자를 편집한 후 저장을 누릅니다

"A" 는 현재 활성 기체를 나타냅니다

기체를 00/00으로 설정하면 기체가 자동으로 꺼집니다.

새 기체를 입력할 수 있도록 사용 가능한 5개의 기체 항목 전체가 다이브 컴퓨터에 표시됩니다.

다섯 번째 기체가 표시될 때 MENU 를 한 번 더 누르면 "기체 정의" 메뉴 항목으로 돌아갑니다.

OC Tec 및 베일아웃 기체 목록은 하나로 동일합니다. 다이브 컴퓨터를 개방식 및 폐쇄식 다이빙 모두에 자주 하는 경우에는 다이빙을 할 때마다 어떤 기체가 켜져 있는지 점검해야 합니다.

새로운 스타일의 기체 정의

새로운 스타일의 기체 선택 메뉴와 마찬가지로 새로운 스타일의 기체 정의 메뉴에서도 글꼴 크기를 줄여 모든 기체를 화면에 한 번에 표시합니다.

기체 선택 스타일을 "새로운" 으로 설정하면 새로운 스타일의 기체 선택 메뉴도 표시됩니다.

기체 정의 메뉴가 열리면 모든 기체가 표시됩니다. 켜진 기체는 초록색으로, 꺼진 기체는 자홍색으로, 현재 활성 기체는 강조 표시됩니다.

왼쪽(다음) 버튼을 눌러서 화살표가 편집할 기체를 가리키면 오른쪽(편집) 버튼을 누릅니다.

클래식 스타일의 기체 정의 메뉴에서 처럼 선택 중인 속성이 디스플레이 하단에 표시됩니다.

기체는 켜거나 끌 수 있으며 산소와 헬륨의 기체 농도는 한 번에 한 자리씩 변경할 수 있습니다.

편집을 마치면 화살표를 나가기 옵션으로 이동하고, 오른쪽(종료) 버튼을 눌러 기체 정의 메뉴를 종료합니다.

Main Color	Green
Title Color	Cyan
End Dive Delay	060s
Bat Icon Surf	+ Warn
▶Gas Select	New
Change	Fdit

고급 1에서 기체 선택을 "새로운" 으로 설정하면 새로운 스타일의 기체 정의 메뉴를 사용할 수 있습니다

99/00	▶50/00	21/00
20/40	10/50	Exit
Next		Edit

다음을 눌러 다음 기체로 높입니다

	99/00	<u>50/00</u>	21/00
러	20/40	10/50	Exit
- 1	Change	On/Off	Next
	벼겨은 누리	기체를 켜니다	

먼경을 눌러 기제들 겁니냐

99/00	<u>5</u> 0/00	21/00
20/40	10/50	
Change	02%	Next
변경을 눌러 .	기체 농도를	한 번에 한

자리씩 올립니다

99/00	50/0 <u>0</u>	21/00
20/40	10/50	Exit
Change	He%	Save

마지막 숫자 편집을 마졌으면 저장을 누릅니다

99/00	50/00	21/00
20/40	10/50	▶Exit
Next		Fxit

작업을 마치면 나가기를 선택하여 기체 정의 메뉴를 종료합니다

🔊 운반하지 않는 기체는 끄기

실제로 운반하고 다이빙에 사용할 계획이 있는 기체만 켜세요. 이 경고를 지키지 않으면 감압 정보가 부정확해질 수 있습니다.

무선 스테이션 기체를 사용하면 다이브 컴퓨터에서 사용자가 운반 중인 OC 및 CC 기체의 전체 정보를 확인하고, 감압 시간을 미리 예측할 수 있습니다. CC 에서 OC로 변경할 때 기체를 껐다가 다시 켤 필요가 없습니다. 다이브 컴퓨터가 기체 세트가 무엇인지 이미 알고 있기 때문입니다. 실제로 운반 중인 CC 및 OC 기체만 켜야 합니다.

다른 기체를 자주 사용하는 경우 기체로 들어가 끌 수 있습니다. 다이빙 중에 기체를 켜고 끌 수 있고, 필요한 경우 다이빙 중에 기체를 추가하거나 제거할 수도 있습니다.

PETREL·3 테크니컬 모드 사용 설명서

감압 플래너

소개

- 간단한 다이빙의 감압 프로필을 계산합니다.
- RMV를 기준으로 기체 소비량을 계산합니다.

감압 플래너 메뉴

- 수면 및 다이빙 중에 모두 사용할 수 있습니다.
- 김집 클대니 예ㅠ

Petrel 3에는 별도의 빠른 NDL 플래너가 포함되어 있어 레크리에이션 모드의 다이빙 설정 메뉴에서 찾을 수 있습니다. 자세한 내용은 Petrel 3 레크리에이션 모드 설명서를 참조하세요.

설정

플래너는 현재 다이빙 모드에서 현재 프로그래밍된 기체와 현재 보수도(GF Low/High) 설정을 사용합니다. VPM-B 다이빙 계획은 VPM-B 잠금 해제 옵션이 있는 장치에서 사용할 수 있습니다.

수면에서 사용할 경우

다이빙 바닥 수심, 바닥 시간, 분당 호흡량(RMV) 및 PPO2(폐쇄식 한정)를 입력합니다.

주의: 최근 다이빙의 잔류 조직 부하(및 CNS%)는 프로필 계산에 사용됩니다

올바른 값을 입력했으면 감압 설정을 확정하고 CNS를 시작한 다음 "계획"을 선택합니다.

OC Depth Time RMV	OC Depth Time RMV
040 <u>0</u> 20 15	040 <u>0</u> 20 15
Enter Bottom Time	Ready to Plan Dive
in minutes	GF: 30/70
Min: 5	Last Stop: 3m
Max:180	Start CNS: 0%
Change Nex	kt Exit Plan
다이빙 세부 정보를 입력합니다	준비되면 계획을 누릅니다

다이빙 중에 사용할 경우

감압 프로필은 상승이 즉시 시작된다는 가정하에 계산됩니다. 이 경우에는 입력할 설정이 없습니다. (RMV는 마지막으로 사용한 값).

감압 플래너 한계

Petrel 3의 감압 플래너는 간단한 다이빙을 위한 기능입니다.

다단계 다이빙은 지원하지 않습니다.

감압 플래너는 프로필을 완벽하게 검증하지는 않습니다. 예를 들어, 질소 마취 제한, 기체 사용 제한 또는 CNS 비율 위반 여부를 확인하지 않습니다.

사용자는 안전한 프로필을 준수할 책임이 있습니다.

Petrel 3의 감압 플래너는 다음과 같은 가정을 합니다.

- 하강 속도는 18m/분(60ft/분), 상승 속도는 10m/분(33ft/분)입니다.
- 언제든지 사용 중인 기체는 PPO2 한계 내에서 PPO2가 가장 높은 기체가 됩니다.
- 플래너는 설정에 구성되어 있는 마지막 정지 수심을 사용합니다.
- RMV는 이동 중이거나 감압하는 동안일 때처럼 다이빙의 바닥 단계에서도 동일합니다.

PPO2 한계에 대한 자세한 내용은 <u>81</u> <u>페이지를 참조하세요.</u>

테크니컬 모드 사용 PETREL·3 설명서

결과 화면

결과는 다음의 표에 나와 있습니다.

Stp:	정지 수심	미터 또는 피트 단위
Tme	정지 시간	분 단위
Run	실행	분 단위
기체	사용 기체	%O2
Qty	사용량	리터 또는 입방 피트 단위

초반 몇 개의 행은 바닥 시간(bot)과 첫 번째 정지까지의 상승 시간(asc)을 나타냅니다. 기체 변경이 필요한 경우에는 초기 상승 구간이 여러 개 표시될 수 있습니다

00	Dept 040	h Tim 0 02	e RMV 0 15		00)ept 04	h Tin 0 02	1e RMV 20 15
Stp	Tme	Run	Gas	Qty	Stp	Tme	Run	Gas
40 21 12 12 9	bot asc asc 1	20 22 23 24 25	28% 28% 50% 50%	1419 115 36 33 29	63	3 6	28 34	50% 50%
Qui	t			Next	Quit	t		
THEA	1 ZLOL	게히 1교			THHA	IZLOL	궤리그교	

	04() 02	<u>15 15 15 15 15 15 15 15 15 15 15 15 15 1</u>)
Stp	Tme	Run	Gas	Qty
6	3	28	50%	73
3	6	34	50%	118
Ouit				Next

개방식 감압 계획 1페이지

개방식 감압 계획 2페이지

두 번 이상의 정지가 필요한 경우 결과가 여러 화면에 나뉘어 표시됩니다.

감압 일정의 마지막 페이지를 지나면 기체 사용량 및 감압 요약 화면이 표시되면서 다이빙에 사용된 각 기체의 예상 양, 총 다이빙 시간, 감압에서 소요된 시간 및 최종 CNS % 가 나타납니다.

OC Depth Time RMV 040 020 15	OC Depth Time RMV 040 020 15
Gas Usage, in Liters 50%: 287 28%: 1534	OC Summary Run: 34 minutes Deco: 14 minutes CNS: 16 %
Quit Next 개방식 기체 사용 요양	Quit Next

폐쇄식 계획의 경우 폐쇄식 감압 요약 후 프로그래밍된 베일아웃 기체에 기반한 베일아웃 계획이 자동으로 생성됩니다.

	Depth	n Tim	1 e	RMV	P02
	045	5 03	30	15	1.3
Stp	Tme	Run	Ga	as	
45	bot	30	10)/50	
21	asc	33	10)/50	
21	1	34	10)/50	
18	2	36	10)/50	
15	2	38	10)/50	
Qui	t				Next

폐쇄식 감압 계획 1페이지

베일아웃 기체 사용량 및 감압 요약도 만들어집니다.

BO Depth Time RMV 045 030 15	P02 1.3	BO Depth 045	Time 030	RMV 15	P02
Gas Usage, in Lit	ters	OC Summa	ary		
99/00: 354		Run:	64 m.	inute	es
36/00: 619		Deco:	34 m.	inute	es
		CNS:	34 %		
Quit	lext	Quit		Ν	lext

베일아웃 기체 사용 요약

베일아웃 감압 요약

감압이 필요하지 않으면 표가 표시되지 않습니다. 대신 지정된 바닥 수심에서 총 무감압 한계(NDL) 시간이 분 단위로 보고됩니다. 또 수면에 도달하는 데 필요한 기체량 (CC의 베일아웃)도 보고됩니다.

	epth	Time	RMV	P02
66	024	030	14	1.3
No De	eco St	ops.		
Total is 30	. NDL) minu	at 24m tes		
Baile is 73	out ga 3 Lite	is quar rs.	ntity	
Quit			[Done
감압 불광	필요			

보수도

보수도 설정(GF High 및 GF Low)은 다이빙 설정 메뉴에서 편집할 수 있습니다. 다이빙 중에는 GF High 값만 편집할 수 있습니다. 이를 통해 다이빙 중에 수면 상승의 보수도를 바꿀 수 있습니다. 예를 들어, 바닥에서 예상보다 훨씬 더 오래 머문 경우 GF High 설정을 줄여 보수도를 추가할 수 있습니다

Display

Save

NDL 대체 디스플레이

감압 중에는 NDL이 0입니다. 그러면 감압이 완료될 때까지 NDL 영역의 공간이 낭비됩니다.

감압이 필요하고 NDL이 0이 되면 NDL 디스플레이 옵션을 사용하여 Change NDL을 다른 정보로 교체할 수 있습니다.

다른 맞춤형 디스플레이와 달리 NDL 디스플레이 옵션은 다이빙 설정 메뉴를 통해 다이빙 중에 변경할 수 있습니다.

NDL 디스플레이에는 7가지 옵션이 있습니다.

- 1. NDL
- 2. 상승 한계
- 3. GF99
- 4. SurfGF
- 5. @+5
- 6. $\Delta + 5$
- 7. 미니

미니 NDL 대체 디스플레이는 선택이 가능하지만, 이 메뉴에서 구성할 수 없고 모양이 다르다는 점에 유의하세요. 자세한 내용은 15페이지의 미니 NDL 대체 디스플레이 섹션을 참조하세요.

밝기

디스플레이 밝기에는 4가지 고정 밝기 설정과 자동 모드가 있습니다.

고정 옵션은 다음과 같습니다.

- 동굴: 배터리 수명이 가장 깁니다.
- 낮음: 배터리 수명이 두 번째로 깁니다.
- 중간: 배터리 수명과 가독성이 가장 균형적입니다.
- 높음: 밝은 햇빛 아래에서도 가독성이 가장 좋습니다.

자동은 조명 센서를 사용하여 디스플레이의 밝기를 결정합니다. 주변광이 많을수록 디스플레이가 밝아집니다. 잠수 중이거나 어두운 물속에서는 디스플레이를 보는 데 아주 약한 밝기만 필요합니다.

자동 설정은 대부분의 상황에서 잘 작동합니다.

디스플레이의 밝기는 배터리 수명을 결정하는 중요한 요소입니다. 전력 소비의 최대 80%가 디스플레이에 전력을 공급하는 데 사용됩니다. 배터리 부족 경고가 발생하면 배터리 수명을 늘리기 위해 디스플레이 밝기가 자동으로 줄어듭니다.

PETREL·3 테크니컬 모드 사용 설명서

다음 메뉴 항목은 외부 PPO2 모니터링을 켜고 끄는 데 사용됩니다. 여기에는 3가지 설정이 있습니다.

- **내부** 내부 설정값
- 외부 외부 PPO2 모니터링
- **BO CCR** 베일아웃 재호흡기

기본값은 "내부"입니다. 내부 고정 설정값 모드를 사용할 때 사용자는 감압 및 CNS 계산을 위해 재호흡기가 실행 중인 설정값을 정의합니다.

"외부" 모드에서는 산소 센서로 외부 PPO2를 모니터링할 수 있습니다. 이 모드에서는 사용 가능한 센서의 평균 PPO2가 감압 계산 및 CNS 추적에 사용됩니다.

외부 센서 모니터링을 사용하려면 이전에 유효한 보정을 실시해야 합니다. <u>자세한</u> <u>내용은 56페이지의 보정 섹션을</u> 참조하세요.

"BO CCR"은 여러 대의 재호흡기를 사용하여 다이빙을 할 때 사용하는 특수 모드입니다. 자세한 내용은 39 페이지의 베일아웃 재호흡기 모드 섹션을 참조하세요.

보팅

보팅 알고리즘은 3개의 센서 중 어느 센서가 정확할지 결정하는 데 사용됩니다. 센서가 ±20% 이내의 다른 두 센서 중 하나와 일치하면 보팅을 통과하는 것입니다. 시스템 평균 PPO2 는 보팅을 통과한 모든 센서의 평균입니다.

예를 들어, 여기 센서 3이 보팅에 실패했습니다. PPO2가 보팅 실패를 나타내기 위해 노란색으로 표시됩니다. 시스템 평균 PPO2 는 센서 1과 2의 평균 PPO2 입니다.

모든 센서가 보팅에 실패하면 디스플레이에 PPO2 측정값과 함께 "보팅 실패"메시지가 번갈아 표시됩니다(노란색으로 표시되어 모두 실패 상태임을 나타냄). 보팅에 실패하면 가장 낮은 PPO2 판독값이 감압 계산에 사용됩니다(즉, 가장 보수적인 값).

DEPTH T	IME	SURFACE
0		2n45m
.96	.97	1.26
Di1P02	CNS	AvgP02

진동 켜기/끄기

진동 기능의 현재 상태를 표시합니다. 오른쪽(편집) 버튼을 눌러 진동 기능을 켜거나 끕니다.

진동 테스트

오른쪽(확인) 버튼을 눌러 진동 기능이 제대로 작동하는지 빠르게 테스트해봅니다.

9.4. 다이빙 로그

다이빙 로그 메뉴를 사용하여 Petrel 3에 저장된 로그를 검토합니다. 최대 1,000시간의 상세한 로그를 기본 샘플링 속도인 10초로 저장할 수 있습니다.

다이빙 로그 메뉴는 수면 위에 있을 때만 사용할 수 있습니다.

로그 조회

이 메뉴를 사용하여 기록한 다이빙 목록을 표시하고 세부 정보를 볼 수 있습니다.

다이빙 로그 목록에서 볼 다이빙을 선택합니다.

다이빙 프로필은 파란색으로, 감압 정지는 빨간색으로 표시됩니다. 다이빙 로그 화면을 스크롤하면 다음의 정보가 표시됩니다.

- 최대 및 평균 수심
- 다이빙 번호
- 날짜(dd-mon-yyyy)
- 시작 다이빙을 시작한 시간
- 종료 다이빙 종료한 시간
- 다이빙 시간(분 단위)
- 최소, 최대 및 평균 온도
- 다이빙 모드(공기, 나이트록스 등)
- 다이빙 전 수면 휴식 시간
- 다이빙 시작 시 기록된 수면 압력
- 사용한 압력경사도 인자 설정
- CNS 시작 및 종료
- 최대 4개의 AI 트랜스미터의 시작 및 종료 압력
- 평균 수면 공기 소비량

로그 편집

개별 로그 화면을 전부 스크롤하면 다이빙 번호, 날짜 및 시간을 변경하거나 다이빙 로그를 삭제할 수 있는 로그 편집 페이지가 나타납니다.

02 보정 이력 ACG FC DCM

이 메뉴는 외부 O2 셀 보정 기록을 보관하여 셀 상태를 보다 쉽게 모니터링할 수 있도록 해줍니다.

주 이력의 각 라인은 O2 보정 이벤트를 나타냅니다. 첫 번째 열의 "P"는 보정 통과를, "F"는 보정 실패를 의미합니다.

각 셀에 기록된 mV 값이 해수면을 기준으로 조정되어 여기에 표시됩니다. 따라서 서로 다른 고도에서 보정을 한 경우에도 값을 쉽게 비교할 수 있습니다.

보정 기록을 조회할 때는 특정 보정의 상세 정보도 표시됩니다.

이 마지막 화면에서 보정을 삭제하여 보정 이력을 깨끗하게 정리할 수도 있습니다.

삭제된 보정 로그는 복원 모드 기능을 사용하여 복원할 수 있습니다.

Cal #	2	07	- Jun - 22
Succe	ess		
F02	0.9	98	
ata	X 1.(00(Se	aLvl)
PP02	= 0.9	98	
mV =	42,	41,	41
Back			

다음 로그

다이빙 로그 번호는 편집할 수 있습니다. 이 기능은 다이브 컴퓨터 로그 번호를 일생 동안의 다이빙 횟수와 일치시키기를 원하는 경우에 유용합니다.

Restore Mode

Edit

이 번호는 다음 다이빙에 적용됩니다.

복구 모드

복구 모드는 켜거나 끌 수 있습니다. 이 기능을 켜면 삭제된 로그와 보정이 "로그 조회" 및 "O2 보정 이력" 하위 메뉴에 회색으로 표시됩니다. 복원 모드에서는 이러한 기록을 복원할 수 있습니다.

기록을 복원할

Next

복구 모드가 활성화된 경우 모든 로그 삭제 옵션도 모든 로그 복구로 바뀝니다.

모든 로그 삭제

모든 로그를 삭제합니다.

삭제된 로그는 복구 모드를 켜서 복구할 수 있습니다.

블루투스 시작

블루투스는 펌웨어 업로드와 다이빙 로그 다운로드에 사용됩니다. 다이브 컴퓨터에서 블루투스를 초기화하려면 이 옵션을 사용합니다.

스택시간 초기화

이 메뉴 화면은 스택 타이머가 활성화된 경우에만 사용할 수 있습니다. 자세한 내용은 82페이지의 고급 설정4 섹션을 참조하세요

10. 시스템 설정 참고 사항

시스템 설정에서는 구성을 설정할 수 있으므로, 다이빙을 하기 전에 구성 정보를 업데이트해두면 편리합니다.

하위 메뉴, 페이지 및 구성 옵션은 다이빙 모드마다 상당히 다릅니다. 이 설명서는 테크니컬 다이빙 모드만 다룹니다. 레크리에이션 모드의 메뉴에 대한 자세한 설명은 Petrel 3 레크리에이션 모드 설명서를 참조하세요.

다이빙 중에는 시스템 설정에 접근할 수 없습니다.

10.1.모드 설정

시스템 설정의 첫 번째 하위 메뉴는 모드 설정입니다.

이 페이지의 화면은 선택한 모드에 따라 다릅니다.

모드

사용 가능한 다이빙 모드:

- 공기
- 나이트록스
- 3 GasNx(기본값)
- OC Tec
- CC/BO
- SC/BO
- PPO2
- 게이지 (예: 바닥 타이머 모드)

이 설명서는 테크니컬 다이빙 모드만 다룹니다. 다른 모드에 관한 내용은 Petrel 3 레크리에이션 다이빙 설명서를 참조하세요.

Setup

CC/BO

Int.

0.7

1.3

EN13319

Edit

Mode

Salinity

Low SP

High SP

lext

PPO2 Mode

Mode

게이지 모드로 또는 게이지 모드에서 변경하면 감압 조직이 초기화됩니다. Petrel 3은 다이버가 이 모드에서 사용하는 호흡 기체가 무엇인지 모르고, 이 때문에 불활성 기체 부하를 추적할 수 없습니다. 반복 다이빙을 적절히 계획하세요.

선택할 모드에 대한 자세한 내용은 <u>8페이지의 다이빙 모드</u> <u>차별화</u>를 참조하세요.

염도

수역 종류(염도)는 측정 압력이 수심으로 전환되는 방식에 영향을 줍니다.

설정:

- 민물
- EN13319(기본값)
- 바닷물

민물과 바닷물은 밀도가 약 3% 차이 납니다. 밀도가 더 높은 바닷물은 민물을 설정했을 때에 비해 동일한 측정 압력에서 더 얕은 수심을 표시합니다.

EN13319 값은 민물과 바닷물 사이입니다. 이 값은 다이브 컴퓨터에 관한 유럽 CE 표준을 따른 것으로 Petrel 3의 기본값이기도 합니다.

이 설정은 컴퓨터에 표시되는 수심에만 영향을 주며, 절대 압력에 의존하는 감압 계산에는 영향을 주지 않습니다.

PPO2 모드 CC 한정

PPO2 모드는 CC/BO 모드에만 나타납니다.

Petrel 3 SA 모델에서 이 값은 항상 "내부"(내부 고정 PPO2) 입니다. 다른 모델에서는 외부 O2 셀을 사용할 때 이 값을 " 외부" 또는 "BO CCR"로 변경할 수 있습니다. <u>자세한 내용은</u> <u>67페이지의 PPO2 모드 섹션을 참조하세요.</u>

하한 및 상한 설정값 <mark>CC 한정</mark>

PPO2 낮음 및 높음 설정값은 "내부" 또는 "BO CCR" PPO2 모드가 활성화된 CC/BO 모드에서만 사용할 수 있습니다.

각 설정값은 0.4에서 1.5까지 설정할 수 있습니다.

설정값은 다이빙 중에도 다이빙 설정 메뉴에서 편집할 수 있습니다. <u>자세한 내용은 71페이지를 참조하세요.</u>

10.2.감압 설정

감압 모델

기본적으로 이 항목은 "Buhlmann ZHL16C GF"를 표시하는데, 압력경사도 인자 모델과 Bühlmann ZHL-16C가 사용되고 있음을 뜻합니다.

Deco Setup	
Deco Model	GF
Conserv (GF)	30/70
Last Stop	6m
NDL Display	NDL
Clear Cntr	0n
Next	Edit

VPM-B 및 DCIEM 감압 알고리즘 옵션은 추가 구매 시 사용할 수 있습니다. 이 옵션을 구매해서 적용하면 감압 모델 메뉴 항목에서 알고리즘을 바꿀 수 있습니다.

보수도

테크니컬 다이빙 모드에서는 GF 또는 VPM 모델의 보수도를 조정할 수 있습니다.

이러한 GF 알고리즘이 지니는 의미에 대한 자세한 설명은 에릭 베이커의 논문 Clearing Up The Confusion About Deep Stops 및 Understanding M-values를 참조하세요. 논문은 인터넷에서 쉽게 찾아볼 수 있습니다.

VPM-B는 0에서 +5까지의 보수도 설정을 가지고 있고, 숫자가 높을수록 더 보수적입니다.

<u>또한, 29페이지의 감압 및 압력경사도 인자도를 참고하시면</u> <u>유용합니다.</u>

마지막 정지

마지막 필수 감압 정지를 수행할 위치를 선택할 수 있습니다.

선택 가능한 수심은 3m/10ft 또는 6m/20ft입니다.

NDL 디스플레이

이러한 옵션은 앞서 다이빙 설정 섹션에서 다루었습니다. 자세한 내용은 <u>66페이지의 NDL 대체 디스플레이</u>를 참조하세요.

MINI NDL 디스플레이 설정

Petrel 3에는 NDL 미니 디스플레이 기능이 있는데 감압 설정 메뉴에서만 구성할 수 있습니다. 이 옵션을 사용하면 정상적인 NDL 및 TTS 위치의 레이아웃을 재구성하여 TTS 외에 2개의 맞춤 설정 정보를 표시할 수 있습니다.

NDL 디스플레이에서 미니 옵션을 선택하면 구성 메뉴가 나타납니다. 이 메뉴에서 사용자는 가운데 및 하단의 미니 디스플레이 옵션을 변경할 수 있습니다. 이 미니 디스플레이의 첫 번째 행은 TTS로 고정됩니다.

NDL 미니 디스플레이 옵션이 사용 중인 경우, 감압 의무가 없는 동안 상단 행에 감압 정보 대신 NDL이 표시됩니다.

완료 카운터

이 옵션을 사용하면 감압 완료 카운터를 켜거나 끌 수 있습니다.

이 기능을 켜면 감압 의무가 완료될 때 감압 영역에 있는 카운터가 0부터 카운트를 시작합니다.

자세한 내용은 28페이지의 감압 정지를 참조하세요.
10.3.AI 설정

다이빙 중에는 시스템 설정 메뉴에 들어갈 수 없으므로 다이빙을 시작하기 전 수면에 있을 때 모든 AI 설정을 구성해 두어야 합니다.

AI 모드

AI 모드는 AI를 쉽게 활성화 또는 비활성화하는 데 사용합니다.

AI 모드 설정	설명
끄기	AI 하위 시스템의 전원이 완전히 꺼져있고 전력을 전혀 소비하지 않습니다.
켜기	AI가 활성화되었습니다. 켜져 있으면 AI는 전력 소비를 약 10% 증가시킵니다.

단위

bar 또는 psi 중에서 선택할 수 있습니다.

트랜스미터 설정

트랜스미터 설정(TX 설정) 메뉴는 트랜스미터를 설정하는 데 사용합니다. 현재 활성화된 트랜스미터는 최상위 AI 메뉴의 TX 설정 옆에 표시됩니다.

이 메뉴에서 최대 4개의 트랜스미터를 구성할 수 있습니다. 속성을 수정할 트랜스미터를 선택합니다.

트랜스미터 켜기/끄기

배터리 전원을 절약하려면 현재 사용하지 않는 트랜스미터를 끕니다.

Tran	smitte	rs
#	0n	Serial
►T1	0n	285817
T2	On	005752
Т3	Off	000000
T4	Off	000000
Next	Setup	Edit

Transmitters		
#	0n	Serial
▶T1	<u>On</u>	285817
T2	0n	005752
T3	Off	000000
Τ4	Off	000000
Change		Next

AI를 사용하지 않을 때는 AI 모드를 꺼짐으로 설정하세요

AI를 사용하지 않는데 그대로 두면 다이브 컴퓨터가 켜져 있을 때 배터리가 빨리 닳습니다. 페어링된 트랜스미터가 통신하지 않으면 Petrel 3은 이를 감지하기 위해 더 많은 전력을 사용합니다. 그러면 전력 소비량이 AI를 껐을 때보다 약 25% 증가합니다. 통신에 성공하면 전원이 AI를 껐을 때보다 약 10% 더 높아집니다.

컴퓨터가 꺼져 있을 때는 AI가 활성화되지 않습니다. 다이브 컴퓨터가 꺼져 있을 때는 AI를 끌 필요가 없습니다.

탱크 설정

트랜스미터 설정 메뉴에서 트랜스미터의 일련번호를 선택하여 해당 트랜스미터의 탱크 설정 메뉴로 들어갑니다.

일련번호 설정

모든 트랜스미터에는 6자리의 고유한 일련번호가 있습니다. 일련번호는 트랜스미터 측면에 각인되어 있습니다.

트랜스미터를 T1에 페어링하려면 일련번호를 입력합니다. 일련번호는 한 번만 입력하면 됩니다. 모든 설정과 마찬가지로 일련번호는 영구 메모리에 저장됩니다. 트랜스미터 설정은 모든 다이빙 모드에 저장됩니다.

정격압력

트랜스미터가 설치된 탱크의 정격압력을 입력합니다.

유효 범위는 69~300bar(1,000~4,350psi)입니다.

이 설정은 탱크 압력 수치 위에 표시되는 기체 압력 막대그래프의 풀 스케일 범위를 확장하는 용도로만 사용됩니다.

예비 압력

예비 압력을 입력합니다.

유효 범위는 28~137bar(400~2,000psi)입니다.

예비 압력 설정은 다음과 같은 경우에 사용됩니다.

- 1. 저압 경고
- 2. 잔여 기체 시간(GTR) 계산

탱크 압력이 이 설정 아래로 떨어지면 "**예비 압력**" 경고가 발생합니다.

탱크 압력이 21bar(300psi) 또는 예비 압력의 절반 이하로 떨어지면 "**임계 압력"** 경고가 발생합니다.

예를 들어 예비 압력이 48bar로 설정되어 있으면 임계 경고는 24bar(48/2)에서 발생합니다. 예비 압력을 27bar로 설정하면 임계 경고는 21bar에서 발생합니다.

이름 변경

다이빙 컴퓨터의 메뉴 및 화면에 표시되는 트랜스미터의 이름을 변경할 수 있습니다. 탱크당 2자까지 맞춤 설정할 수 있습니다. 옵션은 다음과 같습니다.

첫 번째 문자: T, S, B, O 또는 D

두 번째 문자: 1,2,3 또는 4.

페어링 해제

페어링 해제 옵션은 일련번호를 000000으로 초기화하는 가장 빠른 방법입니다.

T1 또는 T2를 사용하지 않아 전력 소비를 최소한으로 줄이려면 AI 모드 설정을 끄기로 설정하여 수신을 완전히 비활성화합니다.

GTR 모드

잔여 기체 시간(GTR)은 예비 압력으로 10m/분(33ft/분)의 속도로 수면으로 직접 상승할 때까지 현재 수심에서 SAC 속도로 머무를 수 있는 시간(분) 을 표시합니다. SAC 속도는 GTR 을 계산할 때 다이빙 마지막 2분 동안의 평균값입니다.

AI Setup	
AI Mode .	On
Units	Bar
Tx Setup	T1 T2
► GTR Mode	SM:T1+T2
SM Switch	21Bar
Next	Edit

GTR 및 SAC는 탱크 1개 또는 사이드 마운트로 구성된 탱크 2개만 기준으로 합니다. 사이드마운트의 경우 용량이 같은 탱크를 사용해야 SAC가 정확합니다.

GTR 및 SAC 설정은 사이드마운트 모드를 식별하는 데도 사용됩니다. 여기서 SM 옵션을 선택하면 탱크 변경 알림이 활성화됩니다.

GTR 모드 설정	설명
끄기	GTR이 비활성화됩니다. SAC도 비활성화됩니다.
T1, T2, T3 또는 T4	선택한 트랜스미터가 GTR 및 SAC 계산에 사용됩니다.
SM:T1+T2 (또는 비슷한 구성)	선택한 트랜스미터의 SAC를 합쳐서 계산하여 GTR에 사용합니다. 사이드마운트 변경 알림이 활성화됩니다.

10.4.중앙 행

이 메뉴에서 중앙 행을 구성하고 미리 볼 수 있습니다.

3개의 중앙 행 위치는 모두 OC Tec 모드에서 사용자가 구성할 수 있습니다.

내부 설정값을 사용할 때 CC/BO 모드에서는 왼쪽 및 오른쪽 위치만 구성할 수 있습니다. 가운데 위치에는 PPO2 설정값이 표시되기 때문입니다.

3개의 셀을 사용하여 외부 모니터링을 사용할 경우 중앙 행 위치를 구성할 수 없습니다. 이중 또는 단일 센서 모드로 작동할 때는 1개 및 2개 위치를 각각 사용할 수 있습니다.

구성 가능한 옵션의 전체 목록은 <u>13페이지의 홈 화면 구성</u> <u>옵션 섹션을 참조하세요</u>.

MINI 디스플레이 설정

Petrel 3에는 글꼴 크기가 작은 대신 좌우의 각 맞춤형 슬롯에 3개의 정보를 표시할 수 있는 미니 디스플레이 기능이 있습니다.

중앙 행 설정 메뉴에서 두 개의 미니 디스플레이 항목 중 하나를 선택하면 해당 미니 디스플레이 설정 메뉴로 이동합니다.

공간 제약으로 인해 모든 미니 디스플레이에 단위가 표시되지는 않습니다.

10.5.OC 기체(BO 기체)

이 메뉴를 사용하여 개방식 기체 목록을 편집할 수 있습니다. 여기에 포함된 옵션은 <u>61</u> 페이지 "다이빙 설정" 섹션의 "기체 정의" 하위 섹션에 있는 옵션과 동일합니다. 이 메뉴 페이지는 5 개의 기체를 동시에 표시하여 편리합니다.

►OC Ga	ses	
1 OC	0n	99/00
2 00	0n	50/00
A3 0C	On	14/55
4 OC	Off	00/00
5 OC	Off	00/00
Next		Edit

각 기체는 켜거나 끄고, O2 및 헬륨 농도로 설정할 수 있습니다. 나머지 비율은 질소로 간주됩니다.

활성 기체는 앞에 'A'가 함께 표시됩니다. 사용이 꺼진 기체는 자홍색(보라색)으로 나타납니다.

CC/BO 모드에서 이 메뉴의 제목은 "BO 기체"입니다. 기체 목록은 OC Tec 모드와 베일아웃 모드 간에 공유됩니다.

10.6.CC 기체 CC한정

이 메뉴에서는 폐쇄식 희석 기체 목록을 편집할 수 있습니다. 여기에 포함된 옵션은 OC 기체 목록 설정 메뉴의 옵션과 동일합니다.

CC Gas	ses	
A1 CC	0n	10/50
2 CC	Off	00/00
3 CC	Off	00/00
4 CC	Off	00/00
5 CC	0ff	00/00
Next		Edit

10.7.02 설정 🔤 📧

이 메뉴 페이지는 외부 PPO2 모니터링을 사용 중일 때 폐쇄식(CC) 또는 반폐쇄식(SC) 모드에서만 사용할 수 있습니다.

보정기체의 FO2

이 설정을 통해 보정 기체의 산소 농도(FO2)를 설정할 수 있습니다.

CC 모드에서는 보정 기체 FO2 를 0.70에서 1.00으로 설정할 수 있습니다. 기본값 0.98은 순산소일 때이지만, 주입 과정 중 다이버가 루프로 호흡할 수 있으므로 수증기를 약 2%로 가정합니다.

SC 모드에서는 보정 기체 FO2를 0.20에서 1.00으로 설정할 수 있습니다. 반폐쇄식 다이버들이 항상 산소를 사용할 수 있는 것은 아니기 때문입니다.

주의: SC 모드에서는 사용자가 내부 PPO2 모니터링을 사용할 수 없습니다.

센서값 표시

메인 화면의 중앙 행에 센서 표시 모드를 설정합니다.

CC 모드에서 사용할 수 있는 설정은 다음과 같습니다. 크게: PPO2 텍스트가 일반적인 큰 글꼴로 표시됩니다. 매우 크게: PPO2 텍스트가 더 크게 표시됩니다.

SC 모드에서 사용할 수 있는 설정은 다음과 같습니다. PPO2: PPO2가 표시됩니다. FiO2: 흡입한 O2 농도(FiO2)가 표시됩니다. 둘 다: 표시된 PPO2는 큰 글꼴로, 아래의 FiO2는 작은 글꼴로 표시됩니다.

02 Setup		DEPTH T	<u>IM</u> E	SURFACE
Cal. FO2	0.98	U		Zh4Jr
Sensor Disp	<u>Fi02</u>	96%	97%	97%
		02/	HE NI	DL TT
lext	Edit	SC 21/	00	0 (

이 메뉴 페이지는 감압 추적을 위해 내부 설정값을 사용하는 경우 CC 모드에서만 사용할 수 있습니다.

이 페이지에서는 설정값을 자동 변경으로 설정합니다. 다이브 컴퓨터는 설정값이 상승 또는 하강인 경우, 둘 다인 경우 또는 둘 다 아닌 경우에 자동 변경이 일어나도록 설정할 수 있습니다.

먼저, "상승"으로 설정하면,

Auto S	<u>P Switch</u>
Up: 0	.7>1.3 Auto
Up Depth	021m
Down: 1	.3>0.7 Auto
Down Dept	:h 012m
로 Next	Edit

설정값 변경은 자동 또는 수동으로 이루어집니다. "상승"을 " 자동"으로 설정하면 자동 변경이 이루어질 수심을 설정할 수 있습니다.

하강 설정값 변경에도 같은 방식을 쓰면 됩니다.

변경 방식이 "자동"으로 설정되어 있으면 다이빙 도중 언제든지 수동으로 설정하여 바꿀 수 있습니다.

자동 변경은 지정된 수심을 통과할 때만 발생합니다. 예를 들어, 상승 변경 수심이 15m로 설정되어 있다고 가정했을 때, 하한 설정값에서 다이빙을 시작한 다음 15m 이상 하강하면 설정값이 자동으로 상한값으로 변경됩니다. 24m 에서 머물고 있을 때 다시 직접 하한 설정값으로 변경하면 설정값이 하한으로 유지됩니다. 15m보다 얕은 수심으로 상승했었다가 다시 15m 아래로 하강하면 다시 자동 설정값 변경이 일어납니다.

Petrel 3은 상승 변경 및 하강 변경 수심 사이 간격을 6m(20ft)로 유지하여 수심 변화가 적을 때는 설정값 간에 급격한 자동 변경이 일어나지 않도록 합니다. 여기서 사용된 값 0.7과 1.3은 예시입니다. 다이빙 설정 또는 모드 설정 메뉴에서 하한 및 상한 설정값을 다르게 조정할 수 있습니다.

설정값 자동 변경의 예:

오른쪽에 표시되는 설정인 경우 다이브 컴퓨터는 다음과 같이 동작합니다.

하한-상한 설정값 자동 변경은 21m 수심에서 활성화됩니다.

다이빙은 설정값 0.7에서 시작합니다. 21m를 지나 하강하면 설정값이 1.3으로 "상승" 하는 것으로 변경됩니다.

다이버가 바닥 시간을 완료하고 상승을 시작합니다.

상한-하한 설정값 자동 변경은 12m 수심에서 활성화됩니다.

12m 이상으로 상승하면 설정값이 것으로 변경됩니다.

10.9.경보 설정

이 페이지는 최대 수심, 시간 및 NDL 낮음에 대한 사용자 맞춤 다이빙 경보를 설정할 때 사용합니다. 설정값을 초과하면 알림이 발동됩니다.

이 페이지에서는 진동 기능을 끄고 켤 수도 있습니다.

경보의 자세한 표시 방식은 <u>23</u> <u>페이지의 알림</u>을 참조하세요.

▶ Alerts	<u>Seti</u>	up
Depth	0n	m
Time	0n	min
Low NDL	0n	min
Vibratior	า ()n
Next		Edit

10.10. 디스플레이 설정

수심 및 온도

수심: 피트 또는 미터 온도: °F 또는 °C

밝기

밝기 옵션은 <u>78페이지</u>를 참조하세요.

Display	<u>Setup</u>
▶Depth Units	Meters
Temp Units	° C
Brightness	Med
Altitude	Auto
Flip Screen	
Next	Edit

고도

Petrel 3의 고도 설정은 기본적으로 자동으로 설정되어 있습니다. 이 모드에서는 어떤 고도에서 다이빙해도 컴퓨터가 자동으로 압력 변화를 적용한다는 뜻입니다. 기술 지원팀의 지시가 있지 않은 한 컴퓨터를 SeaLvl로 설정하지 마세요.

화면 반전

화면의 내용을 위아래로 뒤집습니다.

수면 압력 결정

정확한 수심 측정 및 감압 계산을 위해서는 수면의 주변 대기압을 알아야 합니다. 다이브 컴퓨터를 켜는 방법에 상관없이 수면 압력은 동일한 방식으로 결정됩니다. 다이브 컴퓨터가 꺼진 상태일 때는 15초마다 수면 압력을 측정하고 저장합니다. 10분간의 압력 샘플을 저장합니다. 이 이력은 전원을 켠 직후에 검토하고 최소 압력을 수면 압력으로 사용합니다. 이렇게 수면 압력을 기억한 후에는 다시 켤 때까지 업데이트하지 않습니다.

10.11. 나침반

나침반 보기

나침반 보기 설정은 다음 값 중에서 설정할 수 있습니다.

끄기: 나침반이 비활성화되었습니다.

60°, 90° 또는 120°: 메인 화면에 표시되는 나침반 다이얼의 범위를 설정합니다. 화면에 표시되는 실제 호의 크기는 60°이므로 이 설정 시 가장 자연스러운 느낌을 받을 수 있습니다. 90° 또는 120° 설정을 사용하면 더 넓은 범위를 한 번에 볼 수 있습니다. 기본값은 90°입니다.

진북(편각)

나침반을 진북으로 수정하려면 현재 위치의 편각을 입력합니다.

이 설정은 -99°에서 +99°까지 설정할 수 있습니다.

보정되지 않은 나침반을 일치시켜야 하거나, 내비게이션이 상대 방향을 기준으로 하는 경우에 이 설정은 0°로 둘 수 있습니다.

보정

시간이 지남에 따라 정확도가 떨어지거나 영구 자석 또는 강자성 금속(예: 철 또는 니켈) 물체가 Petrel 3과 매우 가까이 장착된 경우에는 나침반에 보정이 필요할 수 있습니다. 나침반을 보정하려면 해당 물체가 Petrel 3 에 장착되어 있어야 합니다. Petrel 3 디스플레이와 함께 움직이기 때문입니다.

배터리 교체 시마다 나침반을 보정합니다

각 배터리는 자체적인 자기신호를 가지고 있는데, 대부분 강철 케이스 때문입니다. 따라서 배터리를 교체하면 나침반을 다시 보정하는 것이 좋습니다.

Petrel 3을 다른 정확한 나침반 또는 고정된 기준 나침반과 비교하여 보정이 필요한지 알아봅니다. 고정된 기준 나침반과 비교할 경우 자북과 진북(편각) 간의 현지 편차를 고려해야 합니다. 일반적으로 다른 위치로 이동할 때는 보정이 필요하지 않습니다. 진북(편각)만 조정하면 됩니다.

나침반을 보정할 때는 15초 내에 Petrel 3을 최대한 다양한 방향으로 천천히 비틀고 회전합니다.

나침반 보정 팁

다음 팁은 나침반을 올바로 보정하는 데 도움이 됩니다.

- 금속(특히 강철 또는 철) 물체로부터 멀리 떨어트립니다. 예: 손목 시계, 금속 책상, 보트 갑판, 데스크톱 컴퓨터 등이 지구 자기장에 간섭을 일으킬 수 있습니다.
- 나침반을 뒤집거나 옆으로 회전하는 등 최대한 다양한 방향으로 회전합니다.
- 아날로그 나침반과 비교하여 보정치를 확인합니다.

10.12. 시스템 설정

날짜

사용자가 현재 날짜를 설정할 수 있습니다.

시계

사용자가 현재 시간을 설정할 수 있습니다. 형식은 AM, PM 또는 24시간으로 설정할 수 있습니다.

System	Setup
▶Date	8-Aug-2015
Clock	08:08AM
Unlock	
Log Rate	10 Sec
Reset to	Defaults
Next	Edit

잠금 해제

이 기능은 Shearwater 기술 지원팀의 지시에 따라서만 사용해야 합니다.

로그 속도

다이빙 샘플을 컴퓨터 로그에 추가하는 빈도를 설정할 수 있습니다. 샘플이 많아지면 더 높은 해상도의 다이브 로그를 얻을 수 있지만 로그 메모리를 더 많이 차지합니다. 기본값은 10초입니다. 최대 해상도는 2초입니다.

기본값으로 초기화

'시스템 설정'의 마지막 옵션은 '기본값으로 초기화'입니다. 이 옵션을 사용하면 사용자가 변경한 모든 옵션이 공장 초기화되거나 다이브 컴퓨터의 조직이 초기화됩니다. ' 기본값으로 초기화'는 취소할 수 없습니다.

주의: 다이빙 로그를 삭제하거나 다이빙 로그 번호를 초기화하지 않습니다.

10.13. 고급 설정

고급 설정에는 자주 사용하지 않고 대부분의 사용자가 무시할 수 있는 항목을 포함합니다. 보다 자세한 구성이 포함되어 있습니다.

첫 번째 화면에서는 고급 설정 영역으로 들어가거나 고급 설정을 기본값으로 설정할 수 있습니다.

고급 설정 초기화

이 기능은 모든 고급 설정 값을 기본 설정으로 초기화합니다.

vanced

System Info

Battery Info

Done

Regulatory Info

Edit

Enter Adv. Config

Reset Adv. Config

주의: 다이브 컴퓨터의 다른 설정에 영향을 주거나 다이빙 로그를 삭제하거나 다이빙 로그 번호를 초기화하지 않습니다.

시스템 정보

시스템 정보 섹션에는 컴퓨터의 일련번호와 기술 지원팀이 문제 해결할 때 필요한 기타 기술 정보가 포함되어 있습니다.

배터리 정보

이 섹션에서는 사용 중인 배터리 유형 및 배터리 성능에 관한 추가 정보를 제공합니다.

규제 정보

이 섹션에서는 다이브 컴퓨터의 특정 모델 번호와 추가 규제 정보를 확인할 수 있습니다.

고급 설정1

기본 색상

기본 색상을 변경하여 대비를 높일 수 있습니다. 기본값은 초록색이지만 빨간색으로도 변경할 수 있습니다.

Adv. CC	ntig 1
Main Color	Green
Title Colo	r Cyan
End Dive D	elay 060s
Bat Icon	Surf + Warn
Gas Select	Classic
Next	Edi

타이틀 색상

타이틀 색상은 대비를 높이거나 시각적 효과를 위해 바꿀 수 있습니다. 기본값은 청록색이고 이외에도 회색, 흰색, 초록색, 빨간색, 분홍색, 파란색으로 변경 가능합니다.

다이빙 종료 지연

현재 다이빙을 종료하기 전에 수면 상승 후 대기할 시간(초)을 설정합니다.

이 값은 20초에서 600초(10분)까지 설정할 수 있습니다. 기본값은 60초입니다.

한 다이빙에 수면 휴식을 짧게 하려면 이 값을 더 길게 설정하면 됩니다. 또는 수면 휴식 시 다이빙 모드를 더 빨리 종료하려면 시간을 더 짧게 하면 됩니다.

배터리 아이콘

여기서는 배터리 아이콘의 동작을 변경할 수 있습니다. 옵션은 다음과 같습니다.

- 수면/배터리 표시: 수면에 있을 때 항상 배터리 아이콘을 표시합니다. 다이빙 중에는 배터리 부족 경고가 있는 경우에만 나타납니다.
- 항상: 항상 배터리 아이콘을 표시합니다.
- 경고시에만 표시: 배터리 부족 경고가 있는 경우에만 배터리 아이콘이 나타납니다.

기체 선택

이 기능은 <u>60페이지의 기체 선택 메뉴 스타일 옵션 섹션을</u> 참조하세요.

PETREL·3 테크니컬 모드 사용 설명서

고급 설정2

PPO2 한계

이 섹션에서는 PPO2 한계를 변경할 수 있습니다.

🕖 경고

이로 인한 영향을 이해하기 전에는 값을 변경하지 마세요.

A 1

모든 값은 절대 압력[ATA]입니다 (1ATA = 1.013bar)

OC Low PPO2(OC 하한 PPO2)

이 값보다 작으면 모든 기체의

PPO2가 빨간색으로 깜박입니다

ŀ.	Adv.	Contig	2
	OC Min.	PP02	0.18
	OC Mod.	PP02	1.40
	OC Deco	PP02	1.61
	CC Min.	PP02	0.40
	CC Max.	PP02	1.60
	Next		Edi

OC MOD PPO2

(기본값 0.18)

다이빙의 바닥 단계에서 허용되는 최대 PPO2입니다 (**M**aximum **O**perating **D**epth). (기본값 1.4)

OC Deco PPO2(OC 감압 PPO2)

모든 감압 예측(감압 일정 및 TTS)은 어떠한 수심에서 감압에 사용되는 기체가 이 값보다 작거나 같은 PPO2가 가장 높은 기체라고 가정합니다. (기본값 1.61)

다이브 컴퓨터가 기체 변경을 권장할 때는(현재 기체가 노란색으로 표시되는 경우)는 이 값에 따라 결정하는 것입니다. 이 값을 변경하려면 그로 인한 영향을 이해하고 있어야 합니다.

예를 들어, 1.50으로 낮추면 산소로의 기체 변경(99/00)이 이루어지는 수심이 6m/20ft라고 가정하지 않습니다.

CC 최소 PPO2

이 값보다 작으면 PPO2가 빨간색으로 깜박입니다. (기본값 0.40)

CC 최대 PPO2

이 값보다 크면 PPO2가 빨간색으로 깜박입니다. (기본값 1.60)

주의: OC 모드와 CC 모드 모두에서 한계값을 30초 이상 위반하면 "Low PPO2(PPO2 낮음)" 또는 "High PPO2(PPO2 높음)" 경보가 표시됩니다.

바닥 기체 vs. 감압 기체

Oc Tec 및 3 GasNx 모드에서는 산소 농도가 가장 낮은 혼합물을 바닥 기체로 간주하며 OC MOD PPO2 한계를 따릅니다. 다른 기체는 감압 기체로 간주하며 감압 PPO2 한계를 따릅니다.

운반하지 않는 기체를 모두 끄는 것이 중요한 또 다른 이유이기도 합니다.

공기 전용 및 나이트록스 모드(이 설명서에는 다루지 않음) 에서 모든 기체는 바닥 기체라고 간주하며 감압 시에도 OC MOD PPO2 한계를 따릅니다.

PETREL·3 테크니컬 모드 사용 설명서

고급 설정3

버튼 감도

이 메뉴에서는 버튼 감도를 미세하게 조정할 수 있습니다. 이 기능은 실수로 버튼을 누르는 경우가 자주 있는 경우 감도를 낮추는 데 쓸 수 있습니다.

Adv. C	onfig 3
Button Left	Sensitivity Med
Righ	t Med
Next	Edit

고급 설정4 CC 한정

스택 타이머

스택 타이머는 CO2 흡수 캐니스터로 다이빙할 때 소요되는 시간을 추적하는 데 사용할 수 있습니다.

이 설정은 고급 설정4 메뉴에서 켜거나 끌 수 있습니다. 총 시간은 1시간~9시간 59분 사이의 범위로 설정할 수 있습니다. 스택 타이머는 다이빙 시 또는 컴퓨터가 켜져 있을 때 카운트다운하도록 설정할 수 있습니다. 스택 타이머가 1시간 남으면 다이버에게 경고가, 30분 남으면 알람이 표시됩니다.

스택 타이머가 활성화되어 있으면 현재 사용 중이거나 남은 스택 타이머 카운트가 정보 화면에 표시됩니다. 스택 타이머는 메인 레벨 메뉴에서도 초기화할 수 있습니다. 다이빙 중에는 스택 타이머를 초기화할 수 없습니다.

> 주의: 펌웨어를 업데이트하면 스택 타이머 정보가 초기화됩니다.

Adv.	Confi	<u>lg</u> 4
Stack	Timer	0n
Total	Time	3:00
Count	When	Diving
Warn	at	1:00
Alar	m at	0:30
Dama		с;

11. 펌웨어 업데이트 및 로그 다운로드

다이브 컴퓨터의 펌웨어를 항상 최신 상태로 유지해야 합니다. 새로운 기능 및 개선 사항 외에도 펌웨어 업데이트를 통해 치명적인 버그를 해결할 수 있습니다.

Petrel 3은 두 가지 방법으로 펌웨어를 업데이트합니다.

- 1) Shearwater Cloud Desktop
- 2) Shearwater Cloud Mobile

펌웨어를 업그레이드하면 감압 조직 부하가 초기화됩니다. 반복 다이빙을 적절히 계획하세요.

업데이트 중에 화면이 깜박이거나 몇 초 동안 아무것도 나타나지 않을 수 있습니다.

11.1.Shearwater Cloud Desktop

Shearwater Cloud Desktop이 최신 버전인지 확인하세요. <u>최신 버전은 여기에서 다운로드할 수</u> <u>있습니다.</u>

Shearwater Cloud Desktop에 연결하기

Petrel 3의 메인 메뉴에서 블루투스 메뉴를 선택하여 블루투스를 시작합니다.

Shearwater Cloud Desktop에서

- 1. 연결 아이콘을 클릭하여 연결 탭을 엽니다.
- 2. 다이브 컴퓨터 검색
- 3. 컴퓨터가 한 번 연결되면 다음번에는 Petrel 3 탭을 사용하여 더 빠르게 연결할 수 있습니다.

PETREL·3 테크니컬 모드 사용 설명서

Petrel 3이 연결되면 연결 탭에 다이브 컴퓨터 그림이 표시됩니다.

다이빙 다운로드

연결 탭에서 "다이빙 다운로드"를 선택합니다.

다이빙 목록이 생성됩니다. 다운로드하고 싶지 않은 다이빙 로그는 선택 취소한 후 확인을 누르면 됩니다.

Shearwater Cloud Desktop이 컴퓨터로 다이빙을 전송합니다.

연결 탭에서 Petrel 3에 이름을 지정할 수 있습니다. Shearwater 다이브 컴퓨터가 여러 대 있으면 어떤 다이브 컴퓨터에서 어떤 다이빙을 다운로드했는지 쉽게 알 수 있습니다.

Shearwater Cloud Desktop 연결 탭

펌웨어 업데이트

연결 탭에서 "펌웨어 업데이트"를 선택합니다.

Shearwater Cloud Desktop은 최신 펌웨어를 자동으로 선택합니다.

메시지가 표시되면 언어를 선택하고 업데이트를 확인합니다.

Petrel 3 화면에 펌웨어 수신 상태가 백분율로 나타나고, 업데이트가 완료되면 PC에 "다이브 컴퓨터로 펌웨어 전송 성공"이라고 표시됩니다.

펌웨어 업데이트는 최대 15분 정도 걸릴 수 있습니다.

시작 텍스트 업데이트

Petrel 3이 켜지면 시작 화면 상단에 시작 텍스트가 나타납니다. 여기에 사용자의 이름과 전화번호를 기입해두면 다이브 컴퓨터를 잃어버린 경우에 쉽게 되찾을 수 있습니다.

시작 이미지 업데이트

여기에서는 Petrel 3이 켜질 때 나타나는 시작 이미지를 변경하여 다이브 컴퓨터를 구별할 수 있습니다.

시작 이미지 업데이트

11.2. Shearwater Cloud Mobile

Shearwater Cloud Mobile이 최신 버전인지 확인하세요.

<u>Google Play</u> 또는 <u>Apple App Store</u>에서 다운로드할 수 있습니다.

Shearwater Cloud Mobile에 연결합니다.

Petrel 3의 메인 메뉴에서 블루투스 메뉴를 선택하여 블루투스를 시작합니다.

Shearwater Cloud Mobile에서

- 1. 화면 하단의 연결 아이콘을 누릅니다.
- 2. 블루투스 장치 목록에서 Petrel 3을 선택합니다.

다이빙 다운로드

"다이빙 다운로드"를 선택합니다.

다이빙 목록이 생성됩니다. 다운로드하고 싶지 않은 다이빙 로그는 선택 취소한 후 확인을 누르면 됩니다.

Shearwater Cloud가 휴대폰으로 다이빙을 전송합니다.

펌웨어 업데이트

Petrel 3이 Shearwater Cloud Mobile에 연결되면 연결 탭에서 "펌웨어 업데이트"를 선택합니다.

Shearwater Cloud Mobile은 최신 펌웨어를 자동으로 선택합니다.

메시지가 표시되면 언어를 선택하고 업데이트를 확인합니다.

Petrel 3 화면에 펌웨어 수신 상태가 백분율로 나타나고, 완료되면 Shearwater Mobile 앱에 "컴퓨터로 펌웨어 전송 성공"이라고 표시됩니다.

펌웨어 업데이트는 최대 15분 정도 걸릴 수 있습니다.

12. 배터리 교체하기

배터리를 교체하려면 큰 동전이나 와셔가 필요합니다

배터리 캡 제거하기

동전이나 와셔를 배터리 캡 슬롯에 삽입합니다. 배터리 캡이 분리될 때까지 시계 반대 방향으로 돌립니다. 배터리 캡을 깨끗하고 건조한 공간에 둡니다.

배터리 교체하기

Petrel 3를 기울여 기존 배터리를 미끄러트려 꺼냅니다. 새 배터리의 양극 접점부터 삽입합니다. Petrel 3의 하단에 있는 작은 그림으로 올바른 방향을 확인할 수 있습니다.

배터리 캡 재장착하기

배터리 캡 O-링에 먼지나 이물질이 없어야 합니다. O-링에 이물질 또는 손상이 없는지 주의해서 검사하고 부드럽게 청소합니다. 배터리 캡의 O-링은 부나-N(니트릴) O-링에 쓸 수 있는 O-링 윤활유로 정기적으로 윤활하는 것이 좋습니다. 윤활유는 O-링이 올바르게 장착되어 비틀리거나 굳지 않도록 해줍니다.

배터리 캡을 Petrel 3에 장착하며 배터리 접촉 스프링을 누릅니다. 스프링이 압축되어 있는 동안 배터리 캡을 시계 방향으로 돌려 나사산을 맞춥니다. 배터리 캡의 나사산을 넘지 않도록 합니다. 배터리 캡을 확실히 조이면 Petrel 3가 켜집니다. 배터리 캡을 과도하게 조이지 마세요.

주의: 배터리 캡 O-링은 Type 112 부나-N 70 경도계입니다.

배터리 유형 선택

배터리를 교환한 후 사용할 배터리 유형을 선택합니다.

Petrel 3가 사용 중인 배터리 유형을 추측합니다. 배터리 유형이 잘못된 경우에는 수동으로 편집해야 합니다.

 □
 Battery Changed
Check Battery Type

 Voltage: 1.53V

 □
 Battery Type:
1.5V Lithium

 Edit
 Confirm

Petrel 3에는 0.9V~4.3V 사이의

전압을 출력하는 대부분의 AA 규격(14500 규격) 배터리를 사용할 수 있습니다. 그러나 일부 배터리의 성능이 더 좋은 경우도 있습니다.

- 모든 배터리가 진동 기능을 지원하는 것은 아닙니다.
- 연료 게이지 기능을 지원하는 배터리 유형은 다이브 컴퓨터가 방전되기 전에 더 많은 경고를 제공합니다.
- 일부 배터리 유형은 찬물에서 더 잘 작동합니다.

Shearwater는 최상의 성능을 위해 에너자이저 얼티메이트 리튬 배터리 사용을 권장합니다.

지원하는 배터리 유형:

배터리 유형	대략적인 배터리 수명	진동 지원	연료 게이지	찬물 성능
1.5V 리튬 권장	60시간	네	네	매우 좋음
1.5V 알칼리	45시간	아니요	네	양호
1.2V 니켈수소 충전식	30시간	아니요	아니요	불량
3.6V Saft LS14500	100시간	아니요	아니요	불량
3.7V 리튬 이온 충전식	35시간	네	네	좋음

배터리 수명은 중간 밝기 기준입니다.

알칼리 배터리는 특히 누수가 발생하기 쉽습니다. 이는 다이브 컴퓨터 고장의 주요 원인입니다. **알칼리 배터리는** 권장하지 않습니다.

12.1.배터리 교체 시 동작

설정

모든 설정은 영구적으로 유지됩니다. 배터리를 교체해도 설정은 손실되지 않습니다.

시계

시계(시간 및 날짜)는 다이브 컴퓨터가 켜져 있을 때 16 초마다 영구 메모리에 저장되고, 꺼져 있을 때는 5분마다 저장됩니다. 배터리를 분리하면 시계가 작동을 멈춥니다. 배터리를 교체하면 시계가 마지막으로 저장된 값으로 복원됩니다(따라서 오류를 최소화하려면 다이빙 컴퓨터가 켜져 있을 때 배터리를 분리하는 것이 좋습니다).

배터리를 빠르게 교체하면 시간을 조정하지 않아도 되지만, 교체에 몇 분 이상 소요되면 시간을 조정해야 합니다.

예상 시간 오차는 한 달에 약 4분입니다. 오차가 이보다 더 크다면 배터리 교체 중에 시계가 멈추었을 가능성이 높으며, 배터리를 교체할 때 쉽게 조정할 수 있습니다.

시계는 다이빙 컴퓨터가 Shearwater Desktop 또는 Shearwater 모바일에 연결될 때마다 업데이트됩니다.

Batte	ry Changed
Check	Clock & Date
CLOCK	12:36 pm
DATE	18-Dec-2015
Edit	Confirm

배터리를 교체하면 시간을 간단히 조정할 수 있는 화면이 나타납니다

감압 조직 부하

배터리는 반복 다이빙 사이에 안전하게 교체할 수 있습니다.

시계와 마찬가지로 감압 조직 부하는 다이브 컴퓨터가 켜져 있을 때는 16초마다, 꺼져 있을 때는 5분마다 영구 메모리에 저장됩니다.

배터리를 분리해도 조직은 영구 메모리에 저장된 상태로 유지되며 배터리를 교체해도 데이터가 복원되므로 반복 다이빙 사이에 배터리를 교체해도 됩니다. 그러나 다이브 컴퓨터는 배터리를 얼마나 오랜 시간 분리했는지는 알지 못하므로 배터리를 분리한 시간 동안 수면 휴식 시간은 조절되어 반영되지 않습니다.

배터리를 빠르게 교체하면 전원이 꺼져 있는 동안의 시간 간격은 크게 중요하지 않습니다. 그러나, 다이빙 후 바로 배터리를 제거했다가 오랫동안 장착하지 않으면 배터리를 교체해도 조직 부하가 그대로 남아 있습니다.

배터리 교체 시 현재 압력에서 공기로 포화되지 않은 조직이 있다면 교체 후에는 공기로 포화 상태가 됩니다. 이 현상은 100% O2를 사용한 감압 다이빙 후 발생할 수 있으며, 이 경우 더 빠른 조직의 불활성 기체 부하가 완전히 고갈되는 경우가 많습니다. 배터리를 교체한 후에 이러한 조직을 공기로 다시 포화 상태로 만드는 것이 가장 보수적인 방법입니다.

감압 조직이 초기화되는 경우:

- 현재 대기압에서 공기로 포화되도록 설정된 불활성 기체 조직 부하
- 0% 설정된 CNS 산소 독성
- 0으로 설정된 수면 휴식 시간
- 기본 수준으로 설정된 모든 VPM-B 값

13. 보관 및 유지보수

Petrel 3 다이브 컴퓨터는 건조하고 깨끗한 상태로 보관해야 합니다.

Petrel 3에 소금 침전물이 쌓이지 않도록 관리합니다. 소금과 기타 오염 물질을 제거하려면 다이브 컴퓨터를 깨끗한 물에 헹굽니다.

강한 수압에 세척하지 않습니다. 수심 센서가 손상될 수 있습니다.

세제나 기타 세척용 화학제품을 사용하지 않습니다. 다이브 컴퓨터가 손상될 수 있습니다. 보관하기 전에 자연 건조합니다.

직사광선을 피해 서늘하고 건조하며 먼지가 없는 환경에 보관합니다. 직접적인 자외선과 복사열에 노출되지 않도록 합니다.

14.서비스

Petrel 3 내부에는 사용자가 직접 수리 가능한 부품이 없습니다. 전면판의 나사를 조이거나 제거하지 마세요.

물로만 세척합니다. 용매를 사용하면 Petrel 3 다이브 컴퓨터가 손상될 수 있습니다.

Shearwater Petrel 3의 서비스는 Shearwater Research 또는 공인 서비스센터에서만 받을 수 있습니다.

서비스를 요청하려면 Info@shearwater.com으로 문의하세요.

Shearwater는 2년에 한 번씩 공인 서비스센터에서 서비스 받기를 권장합니다.

개조한 흔적이 있으면 보증이 무효화됩니다.

15.용어집

CC - 폐쇄식. 배출한 기체에서 이산화탄소를 제거하여 재순환시키는 재호흡기를 사용하는 스쿠버 다이빙입니다. GTR - 잔여 기체 시간. 예비 탱크 압력으로 수면으로 직접 상승할 때까지 현재 수심에서 SAC 속도로 머무를 수 있는 시간(분)입니다.

NDL - 무감압 한계. 현재 수심에서 필수 감압 정지까지 남은 시간(분)입니다.

0, - 산소 기체.

OC - 개방식. 수중에서 기체가 배출되는 스쿠버 다이빙(즉, 대부분의 다이빙).

PPO, - 산소 부분 압력, 때로 PPO2.

RMV - 분당 호흡량. 기체 사용률은 소비한 기체의 부피로 측정되며, 1대기압의 압력을 기준으로 조정됩니다. Cuft/분 또는 L/분 단위를 사용합니다.

SAC - 수면 공기 소비량. 기체 사용률은 탱크 압력 변화의 속도로 측정되며, 1대기압(예: 수면 압력)의 압력 기준으로 조정됩니다. 단위는 psi/분 또는 bar/분을 사용합니다.

16. Petrel 3 사양

사양	Petrel 3 모델
작동모드	공기 나이트록스 3 GasNx(기체 3개 나이트록스) OC Tec CC/BO SC/BO(FC 및 ACG 모델만 해당) PPO2(FC 및 ACG 모델만 해당) 게이지
디스플레이	풀 컬러 2.6인치 AMOLED
압력(수심) 센서	압전 저항형
정확도	+/-20mbar(수면에서) +/-100mbar(14bar에서)
보정된 수심 센서 범위 (최대 작동 수심)	0~14Bar (130msw, 426fsw)
압착 수심 한계	30bar(~290msw) 참고: 보정된 수심 센서 범위를 초과합니다.
수면 압력 범위	500mbar~1,040mbar
다이빙 시작 수심	해수 1.6m
다이빙 종료 수심	해수 0.9m
작동 온도 범위	+4 º C~+32 º C
단기(시간) 온도 범위	-10 º C~+50 º C
장기 보관 온도 범위	+5 º C~+20 º C
배터리	자가 교체 가능한 AA 크기, 0.9V~4.3V
배터리 작동 수명 (디스플레이 중간 밝기)	45시간(AA 1.5V 알칼리) 60시간(1.5V 리튬) 130시간(SAFT LS14500)
통신	블루투스 저전력(4.0)
나침반 해상도	1°
나침반 정확도	$\pm 5^{\circ}$
나침반 기울기 보정	있음. ± 45° 이상의 피치와 롤
다이빙 로그 용량	약 1,000시간
배터리 캡 0-링	이중 O-링. 크기: AS568-112 소재: 니트릴 경도계: 70A
손목 부착물	버클이 있는 3/4" 고무 스트랩 2개
무게	단독(SA) 모델 - 266g Fischer 커넥터(FC) 모델 - 285g 아날로그 케이블 글랜드(ACG) 모델 - 345g
크기(WXLXH)	83mm x 75.5mm x 39mm

17. 규제 정보

A) 미국 - 연방 통신 위원회(FCC) 이 장치는 FCC 규정 제15조를 준수합니다. 장치는 다음 두 가지 조건에 따라 작동합니다. (1) 이 장치는 유해한 간섭을 일으키지 않습니다 (2) 이 장치는 원치 않는 작동을 유발할 수 있는 간섭을 포함하여 수신되는 모든 간섭을 수용해야 합니다. 이 장비를 임의로 변경하거나 개조하는 것은 허가되지 않으며, 그렇게 할 경우 장비 작동 권한이 무효화될 수 있습니다. 주의: 이 장비는 FCC 규정 제15조의 Class B 디지털 장치 관련 규제에 따라 테스트하고 적합 판정을 받았습니다. 이러한 제한 사항은 주거 환경에서 설치 시 유해한 간섭으로부터 적절히 보호하기 위해 고안되었습니다. 이 장비는 무선 주파수 에너지를 생성, 사용 및 방출할 수 있습니다. 지침에 따라 설치 및 사용하지 않을 경우 무선 통신에 유해한 간섭을 일으킬 수 있습니다. 그러나 특정 설치 환경에서 간섭이 발생하지 않는다는 보장은 없습니다. 이 장비가 라디오 또는 TV 수신에 유해한 간섭을 일으키는 경우(장비를 껐다 켜서 판단할 수 있음) 다음 방법 중 하나 이상을 사용하여 간섭을 해결하세요. - 수신 안테나의 방향이나 위치를 변경합니다. -장비와 수신기 사이의 거리를 늘립니다. - 수신기가 연결된 회로가 아닌 다른 회로의 콘센트에 장비를 연결합니다. -대리점 또는 전문 무선/TV 기술자에게 도움을 요청합니다.

주의: 무선 주파수 방사선 노출.

이 장치는 다른 안테나 또는 송신기와 함께 배치하거나 작동하지 않아야 합니다.

Petrel 3 다이브 컴퓨터의 TX FCC ID: 2AA9B04

B) 캐나다 - 캐나다 산업부(IC)

이 장치는 캐나다 산업부의 RSS 210을 준수합니다. 장치는 다음 두 가지 조건에 따라 작동합니다. (1) 이 장치는 간섭을 일으키지 않습니다 (2) 이 장치는 원치 않는 작동을 유발할 수 있는 간섭을 포함하여 모든 간섭을 수용해야 합니다.

L ⁴utilisation de ce dispositif est autorisée seulement aux conditions suivantes :

(1) il ne doit pas produire d' interference, et
(2) l' utilisateur du dispositif doit étre prêt à accepter toute interference radioélectrique reçu, même si celle – ci est susceptible de compromettre le fonctionnement du dispositif.

주의: 무선 주파수 방사선 노출.

이 무선 장비를 설치할 때는 캐나다 보건부가 규정한 일반 인구에 대한 제한을 초과하는 RF 필드를 방출하지 않도록 안테나가 위치하거나 향하는지 확인해야 합니다. 자세한 내용은 캐나다 보건부 웹사이트의 안전 규정(Safety Code) 6을 참조하세요.

Petrel 3 다이브 컴퓨터의 TX IC: I2208A-04

C) EU 및 영국 적합성 보고서

• 유럽 EC 유형 검사기관: SGS Fimko Oy Ltd, Takomotie 8, FI-00380 Helsinki, Finland. Notified Body No. 0598.

• 영국 EC 유형 검사기관: SGS United Kingdom Ltd, Rossmore Business Park, Ellesmere Port, South Wirral, Cheshire, CH65 3EN, United Kingdom. Approved Body No. 0120.

이 장치는 개인 보호 장비에 관한 규정(EU) 2016/425를 준수합니다.
고압 기체 감지 구성품은 EN 250:2014(호흡 장비 - 개방식 압축 공기 다이빙 장비 - 요구 사항, 테스트 및 표시 - 6.11.1항 압력 표시기) 를 준수합니다. 압력 표시는 훈련을 받은 다이버를 익사 위험으로부터 보호하기 위해 설계되었습니다.

• EN250:2014는 EU에서 판매되는 공기 전용 스쿠버 레귤레이터의 최소 성능 요구 조건을 나타내는 표준입니다. EN250:2014 테스트는 최대 50M(165FSW)의 수심에서 수행합니다. EN 250:2014에서 정의하는 호흡기의 구성 요소는 다음과 같습니다. 압력 표시기, 공기와만 사용 가능. EN250이 표시된 제품은 공기와만 사용할 수 있습니다. EN 13949 가 표시된 제품은 22% 이상의 산소를 함유한 기체와 함께 사용하도록 만들어졌었으며, 공기에 사용해서는 안 됩니다.

• 수심과 시간 측정은 EN 13319:2000(다이빙 액세서리 - 수심 게이지 및 결합된 수심 및 시간 모니터링 장치)을 준수합니다.

• 전자 기기는 다음을 준수합니다.

- ETSI EN 301 489-1, v2.2.3: 2019 무선 장비 및 서비스에 대한 전자파 호환성(EMC) 표준, Part 1: 일반적인 기술 요구 사항. - ETSI 301 489-17 V3.2.4:2020 무선 장비 및 서비스에 대한 전자vk 호환성(EMC) 표준, Part 17: 광대역 데이터 전송 시스템에 대한 특정 조건. - EN 55035:2017/A11:2020 멀티미디어 장비의 전자파 호환성. 내성 요건.

- CISRP32/EN 55032, 2015. A11:2020 멀티미디어 장비의 전자파 호환성. 방출 요건.

- 지침 2011/65/EU 전기 및 전자 장비의 특정 유해 물질 사용 제한 (ROHS)

• 적합성 보고서: https://www.shearwater.com/iso-9001-2015certified/

경고: EN250이 표시된 트랜스미터는 공기와만 사용할 수 있도록 인증받았습니다. EN13949가 표시된 트랜스미터는 나이트록스와만 사용할 수 있도록 인증받았습니다.

18. 문의

www.shearwater.com/contact

본사 100–10200 Shellbridge Way, Richmond, BC V6X 2W7 전화: +1.604.669.9958 info@shearwater.com