LBA

POINTE À ADHÉRENCE OPTIMISÉE

EXCELLENTES PERFORMANCES

Les nouvelles pointes LBA ont des valeurs de résistance au cisaillement parmi les plus élevées du marché et permettent de certifier des résistances caractéristiques des pointes qui se rapprochent vraisemblablement des résistances expérimentales réelles.

CERTIFICAT SUR CLT ET LVL

Valeurs testées et certifiées pour des plaques sur supports en CLT. Son utilisation est également certifiée sur LVL.

LBA RELIÉ

Les pointes sont également disponibles dans la version reliée avec la même certification ETE et donc les mêmes hautes performances.

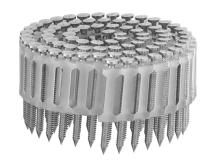
VERSION INOX

Les pointes sont disponibles avec la même certification ETE également en acier inoxydable A4|AISI316 pour des applications à l'extérieur, avec des valeurs de résistance très élevées.

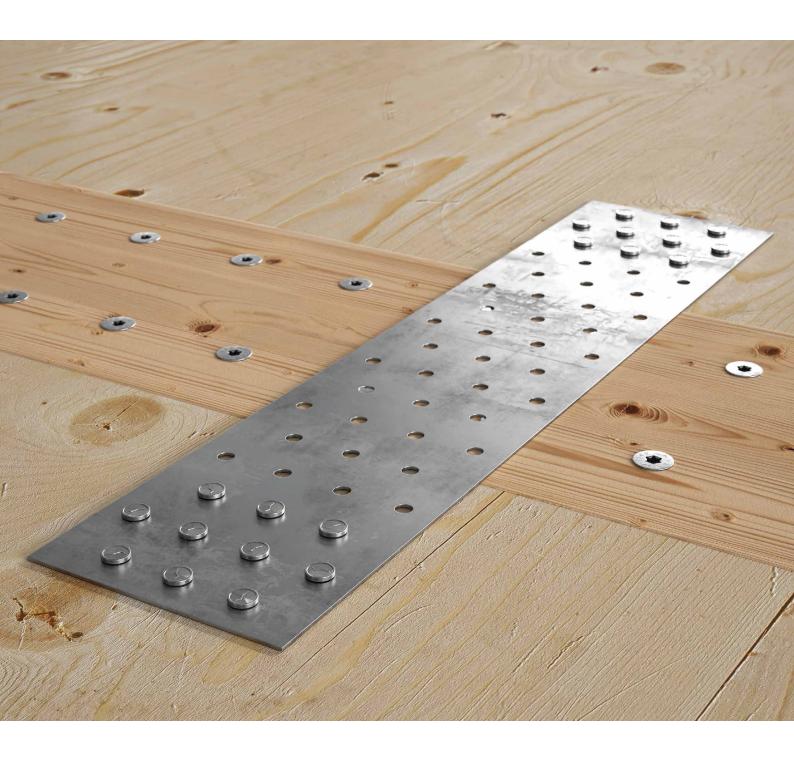
MATÉRIAU

MY

Zn acier au carbone électrozingué



LBA 25 PLA



LBA COIL

DOMAINES D'UTILISATION

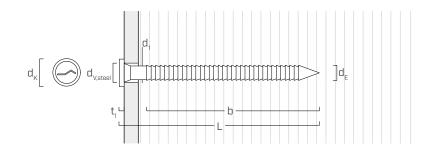
- panneaux à base de bois
- panneaux en aggloméré et MDF
- bois massif
- bois lamellé-collé
- CLT, LVL

CAPACITY DESIGN

Les valeurs de résistance se rapprochent davantage aux résistances expérimentales réelles, par conséquent, la conception en termes de capacité peut être effectuée de manière plus fiable.

WKR

Valeurstestées, certifiées et calculées également pour la fixation de plaques standard Rothoblaas. L'utilisation de la riveteuse accélère et facilite la pose.



L'utilisation avec les équerres NINO permet des applications très polyvalentes : même pour les assemblages poutre-poutre.

LBA atteint les plus hautes performances avec l'équerre WKR avec les valeurs de résistance spécifiques sur CLT.

■ GÉOMÉTRIE ET CARACTÉRISTIQUES MÉCANIQUES

			LB	Α	LBAI
Diamètre nominal	d_1	[mm]	4	6	4
Diamètre tête	d_K	[mm]	8,00	12,00	8,00
Diamètre extérieur	d_E	[mm]	4,40	6,60	4,40
Épaisseur tête	t_1	[mm]	1,50	2,00	1,50
Diamètre trou sur plaque en acier	$d_{V,steel} \\$	[mm]	5,0÷5,5	7,0÷7,5	5,0÷5,5
Diamètre pré-perçage ⁽¹⁾	d_V	[mm]	3,0	4,5	3,0
Moment plastique caractéristique	$M_{y,k}$	[Nm]	6,68	20,20	7,18
Résistance caractéristique à l'arrachement ⁽²⁾ (³⁾	$f_{ax,k}$	[N/mm ²]	6,43	8,37	6,42
Résistance caractéristique à la traction	f _{tens,k}	[kN]	6,5	17,0	6,5

⁽¹⁾ Pré-perçage valable pour bois de conifère (softwood).

⁽²⁾ Valable pour bois de conifére (softwood) - densité maximale 500 kg/m³. Densité associée ρ_a = 350 kg/m³.

(3) Valable pour LBA460 | LBA680 | LBA1450. Pour d'autres longueurs de pointes, veuillez-vous reporter au document ATE-22/0002.

CODES ET DIMENSIONS

CLOUS EN VRAC LBA

Zn

LBAI A4 | AISI316

d_1	CODE	L	b	pcs.
[mm]		[mm]	[mm]	
	LBA440	40	30	250
	LBA450	50	40	250
4	LBA460	60	50	250
	LBA475	75	65	250
	LBA4100	100	85	250
	LBA660	60	50	250
6	LBA680	80	70	250
	LBA6100	100	85	250

d_1	CODE	L	b	pcs.
[mm]		[mm]	[mm]	
4	LBAI450	50	40	250

POINTES RELIÉES EN BANDE

Zn ELECTRO PLATED

LBA 25 PLA - bande avec reliure en plastique 25°

d_1	CODE	L	b	pcs.
[mm]		[mm]	[mm]	
	LBA25PLA440	40	30	2000
4	LBA25PLA450	50	40	2000
	LBA25PLA460	60	50	2000

Compatibles pour des cloueurs Anker 25° HH3522.

LBA 34 PLA - bande avec reliure en plastique 34°

CODE	L	b	pcs.
	[mm]	[mm]	
LBA34PLA440	40	30	2000
LBA34PLA450	50	40	2000
LBA34PLA460	60	50	2000
	LBA34PLA440 LBA34PLA450	[mm] LBA34PLA440 40 LBA34PLA450 50	[mm] [mm] LBA34PLA440 40 30 LBA34PLA450 50 40

Compatibles avec cloueur à bande 34° ATEU0116 et cloueur à gaz HH12100700.

POINTES RELIÉES EN ROULEAU

d ₁	CODE	L	b	pcs.
[mm]		[mm]	[mm]	
	LBACOIL440	40	30	1600
4	LBACOIL450	50	40	1600
	LBACOIL460	60	50	1600

Compatibles avec les cloueurs TJ100091.

REMARQUE: LBA, LBA 25 PLA, LBA 34 PLA et LBA COIL sur demande disponibles en version galvanisée à chaud (HOT DIP).

PRODUITS CONNEXES

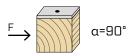
CODE	description	d _{1 POINTE} [mm]	<mark>L_{POINTE}</mark> [mm]	pcs.
HH3731	riveteuse à une main	4÷6	-	1
HH3522	cloueur Anker 25°	4	40÷60	1
ATEU0116	cloueur à bande 34 °	4	40÷60	1
HH12100700	cloueur Anker à gaz 34°	4	40÷60	1
TJ100091	cloueur Anker à rouleau 15°	4	40÷60	1

Pour plus d'informations sur le cloueur, voir la page 406.

HH3731

HH3522

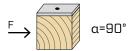
HH12100700


TJ100091

■ DISTANCES MINIMALES POUR POINTES SOLLICITÉES AU CISAILLEMENT | ACIER-BOIS

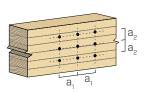
pointes implantés SANS pré-perçage

 $\rho_k \leq 420 \; kg/m^3$


d_1	[mm]		4		6
a ₁	[mm]	10·d·0,7	28	12·d·0,7	50
a ₂	[mm]	5·d·0,7	14	5·d·0,7	21
a _{3,t}	[mm]	15·d	60	1 5⋅d	90
a _{3,c}	[mm]	10·d	40	10 ⋅d	60
a _{4,t}	[mm]	5·d	20	5·d	30
a _{4,c}	[mm]	5·d	20	5·d	30

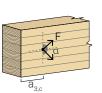
d_1	[mm]		4		6
a ₁	[mm]	5·d·0,7	14	5·d·0,7	21
a ₂	[mm]	5·d·0,7	14	5·d·0,7	21
a _{3,t}	[mm]	10·d	40	10 ⋅d	60
a _{3,c}	[mm]	10·d	40	10 ⋅d	60
a _{4,t}	[mm]	7·d	28	10·d	60
a _{4,c}	[mm]	5·d	20	5·d	30

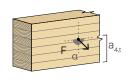
pointes implantées AVEC pré-perçage



d_1	[mm]		4		6	
a ₁	[mm]	5·d·0,7	14	5·d·0,7	21	
a ₂	[mm]	3·d·0,7	8	3·d·0,7	13	
a _{3,t}	[mm]	12·d	48	12·d	72	
a _{3,c}	[mm]	7⋅d	28	7⋅d	42	
a _{4,t}	[mm]	3·d	12	3·d	18	
a _{4,c}	[mm]	3·d	12	3·d	18	

d_1	[mm]		4		6
a_1	[mm]	4·d·0,7	11	4·d·0,7	17
a ₂	[mm]	4·d·0,7	11	4·d·0,7	17
$a_{3,t}$	[mm]	7⋅d	28	7⋅d	42
a _{3,c}	[mm]	7⋅d	28	7⋅d	42
a _{4,t}	[mm]	5·d	20	7⋅d	42
a _{4,c}	[mm]	3·d	12	3·d	18

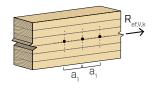

 α = angle entre effort et fil du bois d = d_1 = diamètre nominal pointe



extrémité déchargée 90° < α < 270°

bord chargé 0° < α < 180°

bord non chargé 180° < α < 360°


NOTES

- Les distances minimales sont celles de la norme EN 1995:2014, conformément à ATE-22/0002.
- Dans le cas d'un assemblage bois-bois, les espacements minimums (a₁, a₂) seront multipliés par un coefficient de 1,5.

■ NOMBRE EFFICACE POUR POINTES SOUMISES AU CISAILLEMENT

La capacité portante d'un assemblage réalisé avec plusieurs pointes, toutes de même type et de même taille, peut être inférieure à la somme des capacités portantes de chaque élément d'assemblage.

Pour une rangée de n pointes disposées parallèlement au sens du fil à une distance a_1 , la capacité portante caractéristique efficace est égale à :

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

La valeur de n_{ef} est indiquée dans le tableau sous-jacent en fonction de n et de a₁.

							a ₁ (*)					
		4·d	5·d	6·d	7⋅d	8·d	9·d	10 ⋅d	11·d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
"	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

 $^{^{(\}star)}$ Les valeurs intermédiaires de ${\bf a}_1$ sont déterminées par interpolation linéaire.

■ VALEURS STATIQUES | ACIER-BOIS

LBA Ø4-Ø6

			CISAILLEMENT							TRACTION
	géométrie		acier-bois							extraction du filet
	L b Splate									
d₁ [mm]	L [mm]	b [mm]				R _{v,k} [kN]				R_{ax,k} [kN]
[[IIIII]	S _{PLATE}	[111111]	1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-
	40	30	2,19	2,17	2,16	2,14	2,11	2,09	2,06	0,77
	50	40	2,58	2,58	2,58	2,58	2,58	2,58	2,58	1,08
4	60	50	2,83	2,83	2,83	2,83	2,83	2,83	2,83	1,39
	75	65	3,20	3,20	3,20	3,20	3,20	3,20	3,20	1,85
	100	85	3,69	3,69	3,69	3,69	3,69	3,69	3,69	2,47
	S _{PLATE}		3,0 mm	4,0 mm	5,0 mm	6,0 mm	8,0 mm	10,0 mm	12,0 mm	-
	60	50	4,63	4,59	4,55	4,52	4,44	4,37	4,24	2,45
6	80	70	5,72	5,72	5,72	5,72	5,72	5,72	5,65	3,69
	100	85	6,27	6,27	6,27	6,27	6,27	6,27	6,27	4,72

LBAI Ø4

					CI	SAILLEMEN	NT			TRACTION
	géométrie				extraction du filet					
)	Splate			
d_1	L	b				$R_{V,k}$				R _{ax,k}
[mm]	[mm]	[mm]				[kN]				[kN]
	S_{PLATE}		1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	-
4	50	40	2,67	2,67	2,67	2,67	2,67	2,66	2,63	1,11

NOTES

Pour le calcul, la masse volumique des éléments en bois a été estimée à ρ_k = 385 kg/m³.
 Pour des valeurs de ρ_k différentes, les résistances indiquées dans le tableau peuvent être converties avec le coefficient k_{dens}.

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens.ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Les valeurs de résistance ainsi déterminées pourraient différer, en faveur de la sécurité, de celles résultant d'un calcul exact.

PRINCIPES GÉNÉRAUX à la page 257.

■ VALEURS STATIQUES | ACIER-CLT

LBA Ø4-Ø6

			CISAILLEMENT						TRACTION	
	géométrie		acier-CLT							extraction du filet
		J S _{PLATE}								
d₁ [mm]	L [mm]	b [mm]				R _{v,k} [kN]				R_{ax,k} [kN]
[[[]]]	S _{PLATE}	[111111]	1,5 mm	2,0 mm	2,5 mm	3,0 mm	4,0 mm	5,0 mm	6,0 mm	[[(14]
	40	30	2,19	2,17	2,16	2,14	2,11	2,09	2,06	0,77
	50	40	2,58	2,58	2,58	2,58	2,58	2,58	2,58	1,08
4	60	50	2,83	2,83	2,83	2,83	2,83	2,83	2,83	1,39
	75	65	3,20	3,20	3,20	3,20	3,20	3,20	3,20	1,85
	100	85	3,69	3,69	3,69	3,69	3,69	3,69	3,69	2,47
	S _{PLATE}		3,0 mm	4,0 mm	5,0 mm	6,0 mm	8,0 mm	10,0 mm	12,0 mm	-
	60	50	4,63	4,59	4,55	4,52	4,44	4,37	4,24	2,45
6	80	70	5,72	5,72	5,72	5,72	5,72	5,72	5,65	3,69
	100	85	6,27	6,27	6,27	6,27	6,27	6,27	6,27	4,72

LBAI Ø4

	CISAILLEMENT	TRACTION
géométrie	acier-CLT	extraction du filet
d ₁ L b	$R_{V,k}$	R _{ax,k}
[mm] [mm] [mm]	[kN]	[kN]
S _{PLATE}	1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm	-
4 50 40	2,67 2,67 2,67 2,67 2,66 2,63	1,11

NOTES | CLT

- Les valeurs caractéristiques sont conformes aux spécifications nationales ÖNORM EN 1995 Annexe K.
- Pour le calcul, la masse volumique des planches composant le panneau en CLT a été estimée à $\rho_k=350\ kg/m^3.$
- Les résistances caractéristiques tabulées sont valables pour des pointes in-sérées dans la face latérale du panneau en CLT (wide face) qui traversent plus d'une couche.

PRINCIPES GÉNÉRAUX à la page 257.

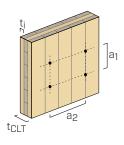
■ DISTANCES MINIMALES POUR POINTES SOLLICITÉES AU CISAILLEMENT | CLT

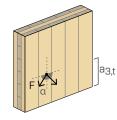
pointes implantés SANS pré-perçage

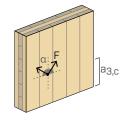
lateral face

24

28


12


	lateral face	
	4	6
3·d	12	18
3·d	12	18
7·d	28	42


d_1	[mm]		4	6
a ₁	[mm]	6·d	24	36
a ₂	[mm]	3·d	12	18
a _{3,t}	[mm]	10 ⋅d	40	60
a _{3,c}	[mm]	6·d	24	36
a _{4,t}	[mm]	3·d	12	18
a _{4,c}	[mm]	3·d	12	18

 α = angle entre effort et direction du fil de la couche externe du panneau en CLT.

 $d = d_1 = diamètre nominal pointe$

 d_1

 a_1

 a_2

a_{3.t}

a_{3.c}

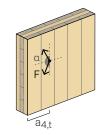
 $a_{4,c}$

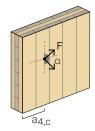
[mm]

[mm]

[mm]

[mm]


[mm]


[mm]

6·d

7·d

3·d

36

42

18

NOTES

- Les distances minimales sont conformes aux spécifications nationales ÖNORM EN 1995-1-1 - Annex K et doivent être considérées valables, sauf indication contraire, dans les documents techniques des panneaux CLT.
- Les distances minimales sont valables pour une épaisseur minimale CLT t_{CLT,-} min = 10·d₁ et pour une épaisseur minimale de chaque couche t_{i,min} = 9 mm.

VALEURS STATIQUES

PRINCIPES GÉNÉRAUX

- Les valeurs caractéristiques sont celles de la norme EN 1995:2014 conformément à ATE-22/0002.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes :

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Les coefficients γ_M et $k_{\mbox{mod}}$ sont établis en fonction de la réglementation en vigueur utilisée pour le calcul.

- Pour les valeurs de résistance mécanique et pour la géométrie des pointes, il a été fait référence à ce qui est reporté dans ATE-22/0002.
- Le dimensionnement et le contrôle des éléments en bois et des plaques métalliques doivent être accomplis à part.
- Les résistances caractéristiques au cisaillement sont évaluées pour des pointes insérées sans pré-perçage.
- Le positionnement des pointes doit être réalisé dans le respect des distances minimales.

- Les valeur tabulées ne dépendent pas de l'angle effort fil du bois.
- Les résistances caractéristiques axiales à l'extraction du ont été évaluées en considérant un angle ϵ de 90 ° entre les fibres et le connecteur et pour une longueur d'implantation égale à b.
- Les résistances caractéristiques au cisaillement des pointes LBA/LBAI Ø4 sont calculées pour des plaques d'une épaisseur = S_{PLATE}, en prenant toujours en compte une plaque épaisse conformément à l'ATE-22/0002 (S_{PLATE} ≥ 1,5 mm).
- Les résistances caractéristiques au cisaillement des pointes LBA Ø6 sont calculées pour des plaques d'une épaisseur = S_{PLATE}, en prenant toujours en compte une plaque épaisse conformément à l'ATE-22/0002 (S_{PLATE} ≥ 2,0 mm).
- En cas de contraintes combinées de cisaillement et de traction, la vérification suivante doit être effectuée :

$$\left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 \le 1$$

■ VALEURS STATIQUES | ACIER-LVL

LBA Ø4-Ø6

			CISAILLEMENT						TRACTION	
	géométrie		acier - LVL							extraction du filet
			→ JS _{PLATE}							
d ₁	L	b				R _{V,90,k}				R _{ax,90,k}
[mm]	[mm] S _{PLATE}	[mm]	1,5 mm	2,0 mm	2,5 mm	[kN] 3,0 mm	4,0 mm	5,0 mm	6,0 mm	[kN]
	40	30	2,63	2,61	2,60	2,58	2,54	2,51	2,47	0,92
	50	40	2,95	2,95	2,95	2,95	2,95	2,95	2,95	1,29
4	60	50	3,24	3,24	3,24	3,24	3,24	3,24	3,24	1,66
	75	65	3,68	3,68	3,68	3,68	3,68	3,68	3,68	2,21
	100	85	4,27	4,27	4,27	4,27	4,27	4,27	4,27	2,94
	S _{PLATE}		3,0 mm	4,0 mm	5,0 mm	6,0 mm	8,0 mm	10,0 mm	12,0 mm	-
	60	50	5,57	5,52	5,47	5,43	5,33	5,24	5,07	3,04
6	80	70	6,56	6,56	6,56	6,56	6,56	6,56	6,48	4,53
	100	85	7,22	7,22	7,22	7,22	7,22	7,22	7,22	5,63

LBAI Ø4

géométrie acier - LVL	extraction du filet
L b J d,	
d ₁ L b R _{V,0,k}	R _{ax,0,k}
[mm] [mm] [kN]	[kN]
S _{PLATE} 1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm	-
4 50 40 3,04 3,04 3,04 3,04 3,04 3,04 3,04	1,32

NOTES | LVL

• Pour le calcul, la masse volumique des éléments en LVL en bois de conifère (softwood) a été estimée à $\rho_k=480\ kg/m^3.$

PRINCIPES GÉNÉRAUX à la page 257.