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Translation velocity combined with rotational velocity results in blade segments of a 

boomerang experiencing reversal of airflow and reversal of angle-of-attack as they traverse 

the 3600 angles of rotation. In this paper, we extent prior work by including the impact of 

reversal of airflow and reversal of angle-of-attack in deriving expressions for lift and rolling-

moment. In addition, we derived an expression for pitching-moment considering the location 

of lift is asymmetric with respect to axis of symmetry of the blade of a boomerang and switches 

polarity across the axis of symmetry of the boomerang blade due to reversal of airflow. 

Contrary to the conclusions in earlier work, our analysis shows that pitching-moment is not 

zero. This is important, as pitching-moment is essential to explain nutation (layover) during a 

boomerang flight. We combined the expressions derived for lift, rolling-moment and pitching-

moment to numerically simulate the trajectory of a boomerang in level flight; including the 

pitching-moment results in nutation and an elliptical flight path. These results are consistent 

with the observed flight behavior of boomerangs. Finally, it is noted that the theory developed 

here is also applicable to lightweight fast moving drones where the blade segments experience 

reversal of airflow and reversal of angle-of-attack. 
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Nomenclature 

C = Chord length (m) 

𝐶  = 2D lift coefficient for leading edge at α = 0 

𝐶  = 2D lift coefficient for trailing edge at α = 0 

𝐶  = 2D lift-curve slope for leading edge (per rad) 

𝐶  = 2D lift-curve slope for trailing edge (per rad) 

𝐶  = 2D non-dimensional lift coefficient at α = 0 

𝐶   = 2D non-dimensional lift-curve slope (per rad) 

𝐶  = Basic non-dimensional rolling-moment (N.m) 

𝐶  = Non-dimensional rolling-moment due to angle-of-attack (N.m) 

𝐶  = Basic non-dimensional Pitching-moment (N.m) 

𝐶  = Non-dimensional Pitching-moment due to angle-of-attack (N.m) 

g = Gravitational acceleration (9.8 m/sec2) 

𝐼  = Moment of inertia in the X-axis (N.m) 

𝐼  = Moment of inertia in the Y-axis (N.m) 

𝐼  = Moment of inertia in the Z-axis (N.m) 

L = Lift (N) 

𝐿   = Basic lift (N) 

𝐿   = Basic lift for leading edge (N) 

𝐿   = Basic lift for trailing edge (N) 

𝐿   = Lift due to angle-of-attack (N) 

𝐿   = Lift due to angle-of-attack for leading edge (N) 

𝐿   = Lift due to angle-of-attack for trailing edge (N) 

m =    Mass of the boomerang 

𝑀   = Rolling-moment (N.m) 

𝑀  = Basic Rolling-moment (N.m) 

𝑀  = Basic rolling-moment for leading edge (N.m) 

𝑀  = Basic rolling-moment for trailing edge (N.m) 



𝑀  = Rolling-moment due to angle-of-attack (N.m) 

𝑀  =    Rolling-moment due to angle-of-attack for leading edge (N.m) 

𝑀  =    Rolling-moment due to angle-of-attack for trailing edge (N.m) 

𝑀   = Pitching-moment (N.m) 

𝑀  = Basic Pitching-moment (N.m) 

𝑀  = Pitching-moment for leading edge (N.m) 

𝑀  = Pitching-moment for trailing edge (N.m) 

𝑀  = Pitching-moment due to angle-of-attack (N.m) 

𝑀  = Pitching-moment for leading edge due to angle-of-attack (N.m) 

𝑀  = Pitching-moment for trailing edge due to angle-of-attack (N.m) 

r = Radial coordinate (m) 

R = Blade length (m) 

𝑅  = Offset for lift from axis of symmetry of the blade (m) 

V = Translational velocity of the boomerang (m/s) 

𝑉  = Velocity normal (perpendicular) to the wind (m/s) 

α = Angle-of-attack (rad) 

θ = Euler angle between z-axis and Z-axis (rad) 

ϕ = Euler angle between x-axis and N-axis (rad) 

𝜓 = Euler angle between N-axis and X-axis (rad) 

ρ = Air density (kg/m3) 

χ = Non-dimensional rotational velocity of blade tip  

ω = Rotational velocity (rad/s) 

 
 
 
 
 
 



I. Introduction 

he boomerang is a simple and ingenious device invented by man thousands of years ago. Primitive societies used 

rocks and sticks to hunt animals. They probably discovered by accident that a stick bent at the center (also called 

throwing sticks, non-returning boomerangs or Kylies) traveled farther with better accuracy than a straight stick 

providing a strategic advantage in hunting prey. The returning boomerang was likely invented from the non-returning 

boomerang by accident and further refined through trial and error. Although non-returning boomerangs were 

unearthed in many parts of the world, remarkably, only the aboriginals in Australia invented the returning boomerangs. 

Most boomerangs are thrown almost at a vertical orientation to the ground at a slight upward elevation to the horizon 

and return to the thrower at a horizontal (flat) orientation to the ground. 

 Many modifications to the traditional V-shaped boomerang have been explored over the many centuries since their 

invention by Australian aboriginals. More recently, boomerang championships have been gaining popularity in many 

countries. The international federation of boomerang associations developed the rules for the various individual and 

team events (Accuracy, Fast Catch, Aussie Round, Long Distance, MTA, etc.) [1]. These competitions have driven 

the boomerang sports enthusiasts to modify the traditional Australian V-shaped boomerangs to better meet the needs 

of the specific competitive events [2] (see Fig. 1). For example, boomerangs with three wings (also called three-

bladers) are almost universally used in the fast catch event where the goal is to throw and catch the boomerang five 

consecutive times in the shortest possible time while reaching at least 20m for each throw. The current world record 

for fast catch is 14.07 seconds, held by Manuel Schütz. Similarly, two-wing, V-shaped boomerangs are almost 

exclusively used in the Australian round where the goal is to throw the boomerang 50m and catch it in the bullseye 

for maximum points. The current world record is 99 points, held by Fridolin Frost. Yet another event is the long-

distance (LD) event, where the goal is to throw the boomerang as far as possible and return past the finish line. LD 

boomerangs are shaped like a hook and unlike other boomerangs are thrown almost flat (horizontal orientation). The 

current world record is 238m, set by Manuel Schütz in 1999. In maximum time aloft (MTA), the goal is to keep the 

boomerang in the air for as long as possible. Boomerangs with wings swept forward are frequently used in this event. 

The current world record is 380.59 seconds, set by Billy Brazelton in 2010. More details on boomerang championship 

world records can be found in [3]. 
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Fig. 1: Sample of boomerangs used in competitive championships (courtesy of [2]).  

  

 Despite the simplicity of the device, the flight dynamics of a boomerang is rather complex. Boomerang designs 

are often developed using rules of thumb developed through numerous iterations of trial and error combined with a 

basic understanding of aerodynamics of boomerangs [4, 5]. In the 1970s, Felix Hess developed the aerodynamic 

equations to numerically simulate the flight trajectory of a boomerang [6]. He collected a large amount of experimental 

data for various geometrical shapes and initial conditions and compared them with numerical simulation results. Based 

on this extensive study, he developed a simple model for a circular flight path of a boomerang, often referred to as 

Hess’s model. In 2004, Azuma Beppu carried out an in-depth study of the flight dynamics of boomerangs with 

different boomerang joint wing angles and for various initial launch conditions using numerical techniques [7, 8]. In 

2012, Vassberg took a significant step forward by deriving analytical expressions to study the flight dynamics of a 

boomerang using blade element theory [9]. Closed-form expressions for basic and angle-of-attack (AOA) lift and 



rolling-moment were derived and the results were used to derive an elegant expression for the radius of the circular 

flight path.  

 The goal of this research is to enhance the existing knowledge on the flight dynamics of boomerangs. The theory 

developed here is also applicable to lightweight fast moving drones that are recently gaining popularity due to rapid 

growth in wireless technology used in the guidance, navigation and control. This paper is organized as follows. In 

section II, we study the lift coefficients of a typical boomerang airfoil for leading edge and trailing edge for positive 

and negative angle-of-attack. In section III, we derive expressions for time-averaged lift and rolling-moment while 

separately accounting for lift and rolling-moment for leading edge versus trailing edge. In section IV, we derive an 

expression for pitching-moment considering lift is generated at an offset from axis of symmetry of the blade and 

switches polarity when the airflow reverses from leading edge to trailing edge. In addition, the complex expressions 

in section IV, are greatly simplified to develop compact expressions that can be readily used with minimal loss of 

accuracy for practical range of non-dimensional angular speeds.  In section V, we simulate the flight trajectory of a 

boomerang using the expressions derived in sections III & IV. Our simulation results adequately describe the key 

features of a boomerang flight – nutation (layover) and elliptical trajectory. Section VI provides the summary and 

conclusions. 

 

Table 1: Typical Boomerangs Flight Parameters. 

Min. Typ. Max.
Radius (Effective) 5cm 15cm 30cm
Blade Width 1cm 4cm 10cm
Blade Thickness 0.5mm 2mm 10mm
Blade Pitch 0deg 5deg 10deg
Mass 3g 50g 150g

Typical Range of Boomerang Properties

 

Min. Typ. Max.
Initial Translational Speed 10m/s 20m/s 35m/s
Final Translational Speed 0m/s 10m/s 20m/s
Initial Rotational Speed 5Hz 10Hz 25Hz
Final Rotational Speed 0Hz 5Hz 15Hz
Initial Launch Angle 45deg 75deg 90deg
Final Return Angle 0deg 20deg 50deg

Typical Range of Operating Conditions of a Boomerang

 

 



II. CFD Simulation of Lift Coefficients for Boomerang Airfoil 

Table I provides a representative sample of geometries and launch conditions of boomerangs that are of interest to 

boomerang enthusiasts that range from novice to world champion. Consider a typical boomerang of 15cm radius, 

thrown at a translational speed of 20m/s and rotational speed of 10Hz. As illustrated in Fig. 2, for the airfoil segment 

at the center, the airflow reverses from leading edge to trailing edge when blade crosses 900 angle of rotation and 

switches back to leading edge when the blade crosses 2700 angle of rotation. Similarly, for the airfoil segment at the 

tip of the blade, airflow reverses from leading edge to trailing edge when blade crosses ~1200 angle of rotation and 

switches back to leading edge when the blade crosses ~2400 angle of rotation. Furthermore, boomerang wings are 

typically twisted to have a positive angle-of-attack to generate adequate lift to balance the gravitational force. This 

results in positive angle-of-attack when the wind hits the leading edge of the boomerang blade; however, as the 

boomerang blade traverses through the angles where the airflow hits the trailing edge, the angle-of-attack reverses in 

polarity.  

 

Airflow at leading edge

Airflow at trailing edge

X

Y

+ve lift

-ve lift

TOP VIEW

 

Fig. 2: Illustration of Airflow at Leading Edge Segment vs. Trailing Edge Segment. 

 

 



Over the last several decades, boomerang designers have experimented with various types of airfoils to maximize 

the performance of the boomerangs. As illustrated in Fig. 3, these airfoil design modifications fall into two broad 

categories – undercut and cambered. Undercut design impacts lift and rolling-moment, while cambered design impacts 

drag. A detailed discussion of this is outside the scope of this work. The reader is referred to [2] for a comprehensive 

discussion on the impact of undercut and cambered designs on the flight trajectory. 

  

Standard 
Boomerang

Camber 
Modifications

Undercut
Modifications

 

Fig. 3: Examples of Common Boomerang Airfoil Designs. 

 

 The lift coefficients for a standard boomerang airfoil design were simulated using XFOIL [10]. XFOIL is a 

program for the design and analysis of subsonic isolated airfoils. Given the coordinates specifying the shape of a 2D 

airfoil, Reynolds and Mach numbers, XFOIL can calculate the pressure distribution on the airfoil and hence lift and 

drag characteristics. Simulations were performed with orientation of the airfoil consistent with the top view illustrated 

in Fig. 2 for a right-hand throw. The pressure distribution on the leading edge of the airfoil for zero and positive angle-

of-attack are shown in Fig. 4 and Fig. 5 respectively. Similarly, the pressure distribution on the trailing edge for the 

airfoil for zero and negative angle-of-attack are shown in Fig. 6 and Fig. 7 respectively. Airflow to the leading edge 

with zero and positive angle-of-attack produces positive lift while airflow to the trailing edge with zero and negative 

angle-of-attack produces negative lift. The reader is advised to pay careful attention to the orientation of the 

boomerang airfoil in the top view illustrated in Fig. 2 for a right-hand throw for correct interpretation of the direction 

of lift. 



 

Fig. 4: XFOIL Simulations for the Leading Edge at 00 AOA for a Standard Boomerang Airfoil. 

 

 

Fig. 5: XFOIL Simulations for the Leading Edge at -50 AOA for a Standard Boomerang Airfoil. 



  

Fig. 6: XFOIL Simulations for the Trailing Edge at 00 AOA for Standard Boomerang Airfoil. 

 

 

Fig. 7: XFOIL Simulations for the Trailing Edge at +50 AOA Standard Boomerang Airfoil. 

 Simulation results of XFOIL for lift coefficients for various positive and negatives angle-of-attack for leading edge 

and trailing edge are shown in Fig. 8 and Fig. 9. Similarly, simulation results of XFOIL for lift-to-drag coefficients 

for positive and negatives angle-of-attack for leading edge and trailing edge are shown in Fig. 10 and Fig. 11. The 



region of interest in each case is identified for clarity and the direction of lift is to be interpreted to be consistent with 

the top view illustrated in Fig. 2 for a right-hand throw. It is widely reported in literature that even though XFOIL 

predicts the trends correctly, it over predicts lift [11]. For example, in [12], it has been reported that XFOIL 

significantly over predicted lift coefficient for BC2125 (with airfoil similar to standard boomerang airfoil used in this 

study), at zero angle-of-attack when compared to measurements. It has also been reported that XFOIL underpredicts 

drag [11]. It is expected similar discrepancies exists in the XFOIL simulation results reported in this work i.e. trends 

are accurate, but it is desirable to obtain the raw numbers for lift and drag coefficients from experimental data.  

 Figures 8 and 9 in the next page. 

 

 

 

 

 

 

 

 

 



 

Fig. 8: Lift Coefficients Vs. AOA for the Leading Edge of a Standard Boomerang Airfoil. 

 

 

Fig. 9: Lift Coefficients Vs. AOA for the Trailing Edge of a Standard Boomerang Airfoil. 



 

Fig. 10: Lift-to-Drag Coefficient Vs. AOA for the Leading Edge of a Standard Boomerang Airfoil. 

 

 

Fig. 11: Lift-to-Drag Coefficient Vs. AOA for the Trailing Edge of a Standard Boomerang Airfoil. 



III. Lift and Rolling-Moment for Leading Edge and Trailing Edge 

As illustrated in Fig. 12, the translational velocity and the rotation velocity for each blade element can be combined 

to determine the velocity of the blade element perpendicular (normal) to the wind: 

𝑉 (𝑟, 𝜓) = 𝑉cos(𝜓) + 𝑟𝜔 (1)

where 𝑉 is the translational velocity of the boomerang, 𝜔 is the angular velocity of the boomerang, 𝜓 is the angle of 

the blade, 𝑟 is the segment distance from the center. Using Eq. (1), the region where the blade segments experience 

airflow from the leading edge vs. trailing edge can be identified. Using the blade-element theory approach outlined in 

[9], expressions for time-averaged lift and rolling-moment will be developed by integrating the lift generated by each 

segment of the blade as it traverses 3600 angle of rotation and over the blade radius. Time-averaged lift for leading 

edge and trailing edge will be evaluated separately using the appropriate lift coefficient and angle-of-attack. The total 

time-averaged lift is then determined by combining the lift in both regions. A similar approach is followed to determine 

the time-averaged rolling-moment.  

 Based on the initial launch conditions and final return conditions described in Table I, the non-dimensional angular 

speed at launch is approximately 0.5. As the boomerang progresses in the flight path, the translational speed and 

rotational speed are both reduced due to drag. Based on observation of the boomerang flight, the translational speed 

decreases more than the rotational speed (as a percentage). This causes the non-dimensional angular speed to increase 

but nonetheless it remains close to 1 until the very end of the flight.   

X

Z

𝜓 𝑉𝑡 = V sin 𝜓 + 𝑟𝜔 
𝑉 

𝑟𝜔 
𝑟 

𝑅 

 

Fig. 12: Vectoral Addition of Translational Velocity and Rotational Velocity of the Blade Segment. 



Non-dimensional Lift and Rolling-Moment Coefficient Derivations 

 Using the blade element theory (BET) approach described in [9], the basic lift for the leading-edge differential 

segment of the boomerang blade can be expressed as:  

𝐿 (𝜓, 𝑟) =
1

2
𝜌𝑉 𝐶 𝐶𝑑𝜓𝑑𝑟 

=
1

2
𝜌𝐶𝐶 [Vcos 𝜓 + 𝑟𝜔] 𝑑𝜓𝑑𝑟 

=
1

2
𝜌𝑉 𝐶𝐶 cos 𝜓 +

𝑟ꭓ

𝑅
𝑑𝜓𝑑𝑟 (2)

where 𝜌 is the air density, 𝐶 is the chord length, 𝐶  is the lift coefficient for leading edge, ꭓ is the non-dimensional 

rotational speed, 𝑅 is the radius and 𝜓 is the Euler angle in the n-axis as described in [9]. The time-averaged lift for 

the leading edge can be determined by integrating the differential lift over the angle of rotation when airflows hits the 

leading edge and over the length of the blade: 
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(3)

Similarly, the time-averaged lift for the trailing edge can be determined by integrating the differential lift over the 

angle of rotation when airflows hits the trailing edge and over the length of the blade: 
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The total time-averaged lift can be obtained by adding the time-averaged lift over the leading edge and trailing edge:  

𝐿 = 𝐿 + 𝐿  

=
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Using eq. (5), the non-dimensional basic lift coefficient can be expressed as: 

𝐶 =
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Using a similar approach, coefficients for non-dimensional angle-of-attack lift (𝑪𝑳𝜶), non-dimensional basic rolling-

moment (𝑪𝑴𝑿𝟎) and non-dimensional angle-of-attack rolling-moment (𝑪𝑴𝑿𝜶) can be expressed as: 
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𝐶 =
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Equations in [9] for time-averaged basic lift, angle-of-attack lift, basic rolling-moment and angle-of-attack rolling-

moment, can be readily obtained from Eqns. 6-9 by setting 𝐶 = 𝐶  and 𝐶 = 𝐶 . Although Eqns. 6-9 were 

derived assuming ꭓ < 1 the results can be readily applied for ꭓ > 1 by taking the real part of the expressions on the 

right-hand side. 

 The non-dimensional basic lift coefficient (𝐶 ), non-dimensional angle-of-attack lift coefficient (𝐶 ), non-

dimensional basic rolling-moment coefficient (𝐶 ) and non-dimensional angle-of-attack rolling-moment coefficient 

(𝐶 ) were plotted as a function of non-dimensional angular speed (ꭓ) in Figs. 13-16. Plots for 𝐶 /𝐶  =  +1 

correspond to the expressions derived in [9] without considering the reversal of airflow and reversal of angle-of-attack. 

Based on the XFOIL simulation results in section II, 𝐶 /𝐶  ~  − 1 for the standard boomerang airfoil. Plots for 



𝐶 /𝐶  =  −1 corresponds to Eqns. 6-9 which consider the reversal of airflow and reversal of angle-of-attack. 

Comparison of results for 𝐶 /𝐶  =  +1 with results for 𝐶 /𝐶  =  −1 highlights the expected impact of 

considering the reversal of airflow and reversal of angle-of-attack on the lift, pitching-moments and rolling-moment 

that impact the aerodynamics of boomerangs. Percentage error in the estimation of 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶  

with and without considering the reversal of airflow and reversal of angle-of-attack are plotted in Fig. 17. These results 

can be summarized as follows: average of ~50% error at non-dimensional angular speed of 0.5 that decreases to an 

average of ~30% at non-dimensional angular speed of 1.0 and rapidly approaches 0% for non-dimensional angular 

speeds of 2.0 and higher.  

 Figures 13 and 14 in the next page. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 13: Non-Dimensional Basic Lift Coefficient (𝐶 ) vs. Non-Dimensional Angular Speed (ꭓ). 

 

Fig. 14: Non-Dimensional AOA Lift Coefficient (𝐶 ) vs. Non-Dimensional Angular Speed (ꭓ). 



 

Fig. 15: Non-Dimensional Basic Rolling-Moment Coefficient (𝐶 ) vs. Non-Dimensional Angular Speed (ꭓ). 

 

Fig. 16: Non-Dimensional AOA Rolling-Moment Coefficient (𝐶 ) vs. Non-Dimensional Angular Speed (ꭓ). 



 

Fig. 17: Percentage Error In Prediction Of 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶  vs. Non-Dimensional Angular Speed (ꭓ). 

 

Discussion of pitching-moment in the next page. 

 

 

 

 

 

 

 

 

 

 

 



Pitching-Moment Derivation 

 As illustrated in Fig. 18, lift in airfoils is generated at an offset from the axis of symmetry of the blade. Furthermore, 

when the airflow reverses from leading edge to trailing edge the lift switches from leading edge to the trailing edge 

across the axis of symmetry. Using Fig. 18, it is possible to readily conclude that the time-averaged pitching-moment 

is not zero. Interestingly, even if reversal of airflow from leading edge to trailing edge is ignored, it is to be noted that 

pitching-moment is not zero. This is contrary to the conclusion reported in [9]. The pitching-moment derivation that 

follows confirms the conclusions of the visualization in Fig. 18. 
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Fig. 18: Illustration of Pitching-Moment. 

 

 The basic pitching-moment for the leading-edge differential segment of the boomerang blade can be expressed as:  

𝑀 (𝜓, 𝑟) =
1
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The time-averaged pitching-moment for the leading edge can be determined by integrating the Eq. 10 over the angle 

of rotation when airflows hits the leading edge and over the length of the blade: 

𝑀 =
1

2
𝜌𝑉 𝐶𝐶 𝑅

1

𝜋
 cos 𝜓 +

𝑟ꭓ

𝑅
cos 𝜓 𝑑𝜓

ꭓ

𝑑𝑟 

=
1

2
𝜌𝑉 𝐶𝐶 𝑅

1

3𝜋
3𝜋

𝑟ꭓ

𝑅
+ 2 +

𝑟ꭓ

𝑅
1 −

𝑟ꭓ

𝑅
− 3

𝑟ꭓ

𝑅
cos

𝑟ꭓ

𝑅
𝑑𝑟 

=
1

2
𝜌𝑉 𝑅𝐶𝐶 𝑅

ꭓ

2
+

1

3𝜋
1 − ꭓ +

sin ꭓ

ꭓ
+

1

24𝜋
(2ꭓ − 1) 1 − ꭓ +

sin ꭓ

ꭓ

−
1

4𝜋

sin ꭓ

ꭓ
+ 2 ꭓcos ꭓ − 1 − ꭓ  

(11)

Similarly, the time-averaged pitching-moment for the trailing edge can be written as: 

𝑀 =
1

2
𝜌𝑉 𝐶𝐶 −𝑅

1

𝜋
 cos 𝜓 +

𝑟ꭓ

𝑅
cos 𝜓 𝑑𝜓

ꭓ
𝑑𝑟 

= −
1

2
𝜌𝑉 𝐶𝐶 𝑅

1

3𝜋
2 +

𝑟ꭓ

𝑅
1 −

𝑟ꭓ

𝑅
− 3

𝑟ꭓ

𝑅
cos

𝑟ꭓ

𝑅
𝑑𝑟 

= −
1

2
𝜌𝑉 𝑅𝐶𝐶 𝑅 −

1

3𝜋
1 − ꭓ +

sin ꭓ

ꭓ
−

1

24𝜋
(2ꭓ − 1) 1 − ꭓ +

sin ꭓ

ꭓ

+
1

4𝜋

sin ꭓ

ꭓ
+ 2 ꭓcos ꭓ − 1 − ꭓ  

(12)

Combining Eqns. 11 and 12, the non-dimensional pitching-moment coefficient can be expressed as: 

𝐶 =
ꭓ

2
+ 1 +

𝐶

𝐶

1

3𝜋
1 − ꭓ +

sin ꭓ

ꭓ
+

1

24𝜋
(2ꭓ − 1) 1 − ꭓ +

sin ꭓ

ꭓ

−
1

4𝜋

sin ꭓ

ꭓ
+ 2 ꭓcos ꭓ − 1 − ꭓ  

(13)

Similarly, the non-dimensional angle-of-attack pitching-moment coefficient can be expressed as: 

𝐶 =
1

2
+ 1 −

𝐶

𝐶

1

6𝜋ꭓ
1 − (1 − ꭓ ) −

1

2𝜋ꭓ
1 + ꭓ cos ꭓ − 1 − ꭓ (14) 

 The non-dimensional basic pitching-moment coefficient (𝐶 ) and non-dimensional angle-of-attack pitching-

moment coefficient (𝐶 ) were plotted as a function of non-dimensional angular speed (ꭓ) in Figs. 19 and 20. These 

results validate the earlier conclusions that the time-averaged pitching-moment is not zero. Furthermore, the time-

averaged pitching-moment remains non-zero even if reversal of airflow from leading edge to trailing edge is neglected 

(𝐶 /𝐶  =  +1). 



 

Fig. 19: Non-Dimensional Basic Pitching-Moment Coefficient (𝐶 )  vs. Non-Dimensional Angular Speed (ꭓ). 

 

Fig. 20: Non-Dimensional AOA Pitching-Moment Coefficient (𝐶 )  vs. Non-Dimensional Angular Speed (ꭓ). 



Simplified Expressions for Lift, Rolling-Moment and Pitching-Moment 

 The complexity of Eqns. 6-9 and 13-14, obfuscates the weak non-linear dependence of non-dimensional 

aerodynamic coefficients (𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶 ) on non-dimensional angular speed (ꭓ). The weak non-

linear dependence is evident in Figs 13-16, 19 and 20. Eqns. 6-9 and 13-14 can be simplified using Taylor series 

expansion. The coefficient of the second-order term were modified to account for truncation of the higher-order terms 

while providing a good fit for the useful range of  0.5 < ꭓ < 2: 

𝐶 ≈
1

2
+

ꭓ

3
− 1 −

𝐶

𝐶

1

4
−

ꭓ

𝜋
+

ꭓ

7
 (15)

𝐶 =
ꭓ

2
+ 1 +

𝐶

𝐶

1

𝜋
−

ꭓ

4
+

ꭓ

5𝜋
 

(16)

𝐶 =
ꭓ

3
+

1

3
1 −

𝐶

𝐶

1

𝜋
−

ꭓ

2
+

3

4𝜋
ꭓ  

(17)

𝐶 =
1

4
− 1 +

𝐶

𝐶

1

8
−

ꭓ
3𝜋

+
ꭓ3

30𝜋
 

(18)

𝐶 =
ꭓ

2
+ 1 +

𝐶

𝐶

2

3𝜋
−

ꭓ
4

+
ꭓ2

3𝜋
 

(19)

𝐶 =
1

2
− 1 −

𝐶

𝐶

1

4
−

ꭓ
2𝜋

+
ꭓ3

24𝜋
 

(20)
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Fig. 21: Illustration of Forces Acting on the Boomerang in (a) Side View and (b) Top View. 

 

 



IV.Boomerang Flight Trajectory 

 As illustrated in Fig. 21(a), for a level flight path, the vertical component of the lift generated by the translational 

and rotational velocities is balanced by the gravitational force on the boomerang.  

𝐹 = 𝐿 cos 𝜃 = 𝑚𝑔 (21) 

As illustrated in Fig. 21(b), the horizontal component of the lift results in acceleration of the boomerang in the 2D X-

Y plane governed by the equations: 

𝐹 = 𝐿 sin 𝜃 = 𝑚𝑔 tan 𝜃 (22)

�̇� =
𝐹

𝑚
= −

𝐹 sin 𝜙

𝑚
= −𝑔 tan 𝜃 sin 𝜙 

(23)

�̇� =
𝐹

𝑚
=

𝐹 cos 𝜙

𝑚
= 𝑔 tan 𝜃 cos 𝜙 

(24)

 Euler’s equations for angular motion without restriction of 𝐼 = 𝐼  can be derived following the approach 

described in [13]. These are a general form of Eq. (9) in [9]. These equations can be summarized as:  

𝐼 �̈� − 𝐼 �̇� sin 𝜃 cos 𝜃 + 𝐼 �̇� sin 𝜃 �̇� cos 𝜃 + �̇� = 𝑀  (25)

𝐼 �̇��̇� cos 𝜃 + 𝐼 �̈� sin 𝜃 + �̇��̇� cos 𝜃 − 𝐼 �̇� �̇� cos 𝜃 + �̇� = 𝑀  (26)

−𝐼 �̇��̇� sin 𝜃 + 𝐼 �̇��̇� sin 𝜃 + 𝐼 −�̇��̇� sin 𝜃 + �̈� cos 𝜃 + �̈� = 𝑀  (27)

 Eqns. 23 and 24 for translational motion can be combined with Eqns. 25-27 for angular motion to simulate the 2D 

flight trajectory of the boomerang. Simulation results for nutation angle with and without pitching-moment (Eq. 13) 

are shown in Fig. 22. Lift is assumed to be offset at one-fourth the chord length. As expected including pitch-moment 

results in nutation (layover) of the boomerang. The boomerang nutates ~200 from an initial launch angle of 750 to 

return angle of 550. A standard boomerang described in Table I was used in the simulation. However, in practice such 

a boomerang is observed to nutate ~600. Other sources of pitching-moment some of which are described in [9], 

contribute to the additional nutation observed in practice. The authors are currently investigating these sources that 

contribute to additional nutation and expect to report the findings in a subsequent publication. These additional sources 

of nutation are emulated by doubling 𝑀  to illustrate the impact. As expected, the nutation increases getting closer the 

observations in the field. 

 As shown in Fig. 23, the flight trajectory of the boomerang is circular when pitching-moment is set to zero. 

However, when pitching-moment is included using Eq. 13, the boomerang follows an elliptical (or “tear” drop) flight 

trajectory. Also, the elliptical path is shifted towards the direction of the initial throw. Throw reaches 2m farther in 



the positive X-direction but 2m shorter in the negative X-direction. Furthermore, if the additional sources of nutation 

are emulated by doubling 𝑀 , the flight trajectory becomes more elliptical closely resembling the flight trajectory in 

the field.  

 

Fig. 22: Nutation Angle vs. Time with and without Pitching-Moment Included. 

 

 

Fig. 23: Flight Trajectory with and without Pitching-Moment Included. 



Fig. 24 shows the impact of including the reversal of airflow on the boomerang flight trajectory. Including the 

reversal of airflow (𝐶 /𝐶  =  0, −1) reduces the rolling-moment. Reduction in the rolling-moment results in the 

boomerang maintaining a larger radius of curvature causing the boomerang to return to the thrower in a less elliptical 

and more circular flight path. The precise reduction of rolling-moment depends on the lift coefficients of leading edge 

vs. trailing edge used in equations for rolling-moment described in the section III. In practice, the thrower compensates 

for the difference by adjusting the speed of translational speed, rotational speed and launch angle to return the 

boomerang to the thrower.  

 

Fig. 24: Flight Trajectory with and without Including Reversal of Airflow from Leading Edge to Trailing Edge. 

 



V. Conclusion 

Blades of a boomerang experience reversal of airflow and reversal of angle-of-attack as they traverse the 360-

rotation angle. The blade-element-theory approach developed in prior work was used to derive expressions for lift and 

rolling-moment including the impact of reversal of airflow and reversal of angle-of-attack. Our study shows that the 

time-averaged lift and rolling-moment are reduced due to reversal of polarity of lift when the air flows over the trailing 

edge. The impact of reduction in rolling-moment on the flight trajectory of the boomerang was studied and shown to 

reduce the curvature of the flight path. In addition, an expression for the pitching-moment was derived considering 

the asymmetric position of lift with respect to axis of symmetry of the blade of a boomerang and switches polarity 

across the axis of symmetry when the airflow switches from leading edge to trailing edge. Contrary to the conclusions 

in earlier work, our analysis shows that pitching-moment is not zero. Including the pitching-moment leads to nutation 

(layover) during the boomerang flight of the boomerang. In addition, it leads to an elliptical (“tear drop”) flight 

trajectory. Both these features are consistent with the observation of the flight of a boomerang. Further study is 

required to explain the larger nutation observed in practice during the flight of a boomerang. Finally, it is noted that 

the theory developed here is applicable to lightweight fast moving drones that are recently gaining popularity due to 

rapid development of wireless technology used in the guidance, navigation and control. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

A. Lift due to Angle-of-Attack 

𝐿 (𝜓, 𝑟) =
1

2
𝜌|𝑉 |𝑉 𝐶 𝐶𝑑𝜓𝑑𝑟 

=
1

2
𝜌𝐶𝛼𝐶 |Vcos 𝜓 + 𝑟𝜔|𝑉𝑑𝜓𝑑𝑟 

=
1

2
𝜌𝑉 𝐶𝛼𝐶 cos 𝜓 +

𝑟ꭓ

𝑅
𝑑𝜓𝑑𝑟 

 

𝐿 =
1

2
𝜌𝑉 𝐶𝛼𝐶

1

𝜋
 cos 𝜓 +

𝑟ꭓ

𝑅
𝑑𝜓

ꭓ

𝑑𝑟 

=
1

2
𝜌𝑉 𝐶𝛼𝐶

𝑟ꭓ

𝑅
+

1

𝜋
1 −

𝑟ꭓ

𝑅
−

1

𝜋

𝑟ꭓ

𝑅
cos

𝑟ꭓ

𝑅
𝑑𝑟 

=
1

2
𝜌𝑉 𝑅𝐶𝛼𝐶

ꭓ

2
+

1

2𝜋

3

2
1 − ꭓ +

sin ꭓ

2ꭓ
− ꭓcos ꭓ  

 

𝐿 =
1

2
𝜌𝑉 𝐶𝛼𝐶

1

𝜋
 − cos 𝜓 −

𝑟ꭓ

𝑅
𝑑𝜓

ꭓ
𝑑𝑟 

=
1

2
𝜌𝑉 𝐶𝛼𝐶

1

𝜋
1 −

𝑟ꭓ

𝑅
−

1

𝜋

𝑟ꭓ

𝑅
cos

𝑟ꭓ

𝑅
𝑑𝑟 

=
1

2
𝜌𝑉 𝑅𝐶𝛼𝐶

1

2𝜋

3

2
1 − ꭓ +

sin ꭓ

2ꭓ
− ꭓcos ꭓ  

 

𝐿 = 𝐿 + 𝐿  

=
1

2
𝜌𝑉 𝑅𝐶𝛼𝐶

ꭓ

2
+

1

2𝜋
1 +

𝐶

𝐶

3

2
1 − ꭓ +

sin ꭓ

2ꭓ
− ꭓcos ꭓ  

≈
1

2
𝜌𝑉 𝑅𝐶𝛼𝐶

ꭓ

2
+ 1 +

𝐶

𝐶

1

𝜋
−

ꭓ

4
+

ꭓ

6𝜋
+

ꭓ

120𝜋
…  

 

 



B. Rolling-Moment Derivation 

𝑀 (𝜓, 𝑟) =
1

2
𝜌𝑉 𝐶 𝐶. 𝑟 cos 𝜓 𝑑𝜓𝑑𝑟 

=
1

2
𝜌𝑉 𝐶𝐶 cos 𝜓 +

𝑟ꭓ

𝑅
. 𝑟 cos 𝜓 𝑑𝜓𝑑𝑟 

𝑀 =
1

2
𝜌𝑉 𝐶𝐶

1

𝜋
 cos 𝜓 +

𝑟ꭓ

𝑅
. 𝑟 cos 𝜓 𝑑𝜓

ꭓ

𝑑𝑟 

=
1

2
𝜌𝑉 𝐶𝐶

1

3𝜋
2𝑟 +

ꭓ 𝑟

𝑅
1 −

𝑟ꭓ

𝑅
+ 3ꭓ

𝑟

𝑅
𝜋 − cos

𝑟ꭓ

𝑅
𝑑𝑟 

=
1

6
𝜌𝑉 𝑅 𝐶𝐶 ꭓ 1 +

1

15𝜋ꭓ
2 + (3ꭓ − ꭓ − 2) 1 − ꭓ +

2

3𝜋ꭓ
1 − (1 − ꭓ ) /

−
1

𝜋
cos ꭓ −

1

3ꭓ
(2 + ꭓ ) 1 − ꭓ − 2  

𝑀 =
1

2
𝜌𝑉 𝐶𝐶

1

𝜋
 cos 𝜓 +

𝑟ꭓ

𝑅
. 𝑟 cos 𝜓 𝑑𝜓

ꭓ
𝑑𝑟 

=
1

2
𝜌𝑉 𝐶𝐶

1

3𝜋
− 2𝑟 +

ꭓ 𝑟

𝑅
1 −

𝑟ꭓ

𝑅
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𝑟

𝑅
− cos

𝑟ꭓ

𝑅
𝑑𝑟 

=
1

6
𝜌𝑉 𝑅 𝐶𝐶 ꭓ −

1

15𝜋ꭓ
2 + (3ꭓ − ꭓ − 2) 1 − ꭓ −

2

3𝜋ꭓ
1 − (1 − ꭓ )

+
1

𝜋
cos ꭓ −

1

3ꭓ
(2 + ꭓ ) 1 − ꭓ − 2  

𝑀 = 𝑀 + 𝑀  

=
1

6
𝜌𝑉 𝑅 𝐶𝐶 ꭓ

+ 1 −
𝐶

𝐶

1

15𝜋ꭓ
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2

3𝜋ꭓ
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−
1

𝜋
ꭓcos ꭓ −

1

3ꭓ
(2 + ꭓ ) 1 − ꭓ − 2  



≈
1
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1
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𝐶
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3
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1
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𝑀 (𝜓, 𝑟) =
1

2
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1
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−
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8𝜋ꭓ
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C. Pitching-Moment Derivation 

𝑀 (𝜓, 𝑟) =
1

2
𝜌𝑉 𝐶 𝐶. 𝑅 . cos 𝜓 𝑑𝜓𝑑𝑟 
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sin ꭓ

ꭓ

−
1

4𝜋

sin ꭓ

ꭓ
+ 2 ꭓcos ꭓ − 1 − ꭓ  



≈
1

2
𝜌𝑉 𝑅𝐶𝐶 𝑅

ꭓ

2
+ 1 +

𝐶

𝐶

2

3𝜋
−

ꭓ

4
+

ꭓ

3𝜋
−

ꭓ

60𝜋
…  

 

𝑀 (𝜓, 𝑟) =
1

2
𝜌|𝑉 |𝑉 𝐶 𝐶𝑅 cos 𝜓 𝑑𝜓𝑑𝑟 

=
1

2
𝜌𝑉 𝐶𝛼𝐶 𝑅 cos 𝜓 +

𝑟ꭓ

𝑅
cos 𝜓 𝑑𝜓𝑑𝑟 

 

𝑀 =
1

2
𝜌𝑉 𝐶𝛼𝐶 𝑅

1

𝜋
 cos 𝜓 +

𝑟ꭓ

𝑅
cos 𝜓 𝑑𝜓

ꭓ

𝑑𝑟 

=
1

2
𝜌𝑉 𝐶𝛼𝐶 𝑅

1

2
+

1

2𝜋

𝑟ꭓ

𝑅
1 −

𝑟ꭓ

𝑅
− cos

𝑟ꭓ

𝑅
𝑑𝑟 

=
1

2
𝜌𝑉 𝑅𝐶𝛼𝐶 𝑅

1

2
+

1

6𝜋ꭓ
1 − (1 − ꭓ ) / −

1

2𝜋ꭓ
1 + ꭓ cos ꭓ − 1 − ꭓ  

 

𝑀 =
1

2
𝜌𝑉 𝐶𝛼𝐶 −𝑅

1

𝜋
 −cos 𝜓 −

𝑟ꭓ

𝑅
cos 𝜓 𝑑𝜓

ꭓ
𝑑𝑟 

= −
1

2
𝜌𝑉 𝐶𝛼𝐶 𝑅

1

2𝜋

𝑟ꭓ

𝑅
1 −

𝑟ꭓ

𝑅
− cos

𝑟ꭓ

𝑅
𝑑𝑟 

= −
1

2
𝜌𝑉 𝑅𝐶𝛼𝐶 𝑅

1

6𝜋ꭓ
1 − (1 − ꭓ ) −

1

2𝜋ꭓ
1 + ꭓ cos ꭓ − 1 − ꭓ  

 

𝑀 = 𝑀 + 𝑀  

=
1

2
𝜌𝑉 𝑅𝐶𝛼𝐶 𝑅

1

2
+ 1 −

𝐶

𝐶

1

6𝜋ꭓ
1 − (1 − ꭓ ) / −

1

2𝜋ꭓ
1 + ꭓ cos ꭓ − 1 − ꭓ  

≈
1

2
𝜌𝑉 𝑅𝐶𝛼𝐶 𝑅

1

2
− 1 −

𝐶

𝐶

1

4
−

ꭓ

2𝜋
+

ꭓ

24𝜋
+

ꭓ

240𝜋
…  
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