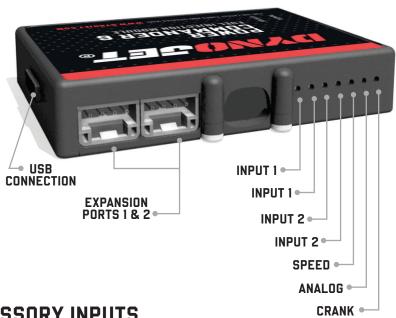
# POWER COMMANDER 6

Installation Guide for: PC6-20023-PTI

Model Coverage: 2002-2007 Suzuki Hayabusa


# **PARTS LIST**

- 1 POWER COMMANDER 6
- 1 INSTALLATION GUIDE
- 1 USB CABLE
- 2 DYNOJET DECALS

- 2 POWER COMMANDER DECALS
- 2 VELCRO STRIPS
- 1 ALCOHOL SWAB

PLEASE READ ALL DIRECTIONS BEFORE STARTING INSTALLATION.
THE IGNITION MUST BE TURNED OFF BEFORE INSTALLATION.

## INPUT ACCESSORY GUIDE

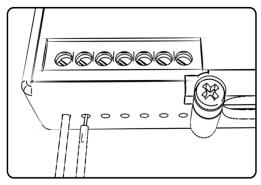


### OPTIONAL ACCESSORY INPUTS

Map (Input 1 or 2) The PC6 has the ability to hold 2 different base maps. You can switch on the fly between these two base maps when you hook up a switch to the MAP inputs. You can use any open/close type switch. The polarity of the wires is not important.

Shifter (Input 1 or 2) Used for clutch-less full throttle upshifts. Insert the wires from the Dynojet quick shifter into either Input 1 or Input 2. The polarity of the wires is not important. Set to Input 2 by default.

Speed If your application has a speed sensor then you can tap into the signal side of the sensor and run a wire into this input. This will allow you to calculate gear position in the Control Center Software. Once gear position is setup you can alter your map based on gear position and setup gear dependent kill times when using a quick shifter.


Analog This input is for a 0-5v signal such as engine temp, boost, etc. Once this input is established you can alter your fuel curve based on this input in the Power Core software.

Launch
You can connect a wire to either Input 1 or Input 2 and then the other end to a switch. This switch when engaged (continuity) will only allow the RPM to be raised to a certain limit (set in the software). When released, you will have full RPM.

### **WIRE CONNECTIONS**

To input wires into the PC6 first remove the rubber plug on the backside of the unit and loosen the screw for the corresponding input. Using a 22-24 gauge wire, strip about 10mm from its end. Push the wire into the hole of the PC6 until it stops and then tighten the screw. Make sure to reinstall the rubber plug.

NOTE: If you tin the wires with solder it will make inserting them easier.



# **INSTALLING THE POWER COMMANDER 6**



- 1 Remove the main seat and the passenger seat.
- 2 Hold the front of the fuel tank up using the prop rod located in the trunk area.
- 3 Locate the connector from the main wiring harness to the injector rail and unplug this connector as shown.

This connector is white in color.



4 Attach the connectors from the PC6 to the stock wiring harness connectors as shown.



- 5 Route the PC6 wiring along the inside of the frame towards the battery.
- Attach the ground wire from the PC6 to the negative side of the battery as shown.



7 Using the supplied velcro, secure the PC6 in the rear section of the trunk as shown.

Make sure to clean both surfaces with the alcohol swab before attaching.

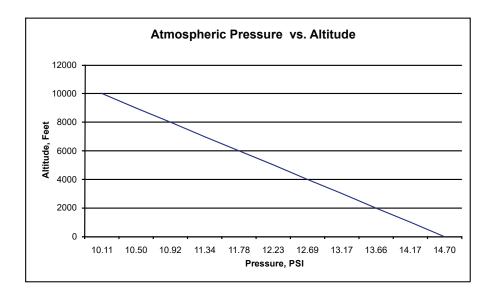
8 Bolt fuel tank back into place.

Download the latest map files from our web site at dynojet.com/tunes.

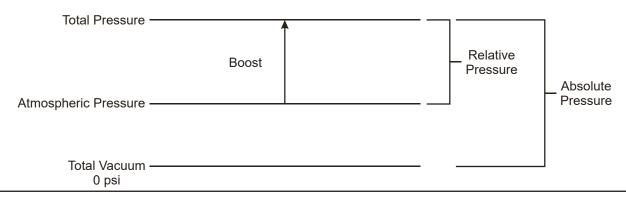


4 2002-2007 SUZUKI HAYABUSA

### **Pressure Values**


The pressure values shown in the PC5 Pressure table are absolute pressure.

Most boost gauges display relative pressure. Relative pressure is the pressure in the manifold minus atmospheric pressure. A relative pressure gauge will read zero when powered up, but with the engine not running.


Absolute pressure is the total pressure acting on the pressure sensor. The total pressure is atmospheric pressure and the vacuum generated by the engine when the turbo compressor is not generating positive pressure, or atmospheric pressure plus the pressure generated by the compressor. An absolute pressure sensor will display higher values than a relative sensor. If you know the atmospheric pressure at the present time, relative pressure can be calculated by subtracting atmospheric pressure from the absolute pressure reading.

The advantage to using absolute pressure is that it compensates for changes in atmospheric pressure that occur due to changes in altitude or weather.

Below is a chart showing the approximate change in absolute atmospheric pressure for changes in altitude.



| Altitude<br>(feet) | Pressure (psi) |
|--------------------|----------------|
| 10000              | 10.11          |
| 9000               | 10.50          |
| 8000               | 10.92          |
| 7000               | 11.34          |
| 6000               | 11.78          |
| 5000               | 12.23          |
| 4000               | 12.69          |
| 3000               | 13.17          |
| 2000               | 13.66          |
| 1000               | 14.17          |
| 0                  | 14.70          |



# TRUTH IN PERFORMANCE