| ITEM | DESCRIPTION | MATERIAL | TREATMENT | Q.TA'
DA | Q.TA'
SR | |--------|-------------------------|--------------------------|---------------|-------------|-------------| | 1 | Body | Extruded aluminium | Hard anodized | 1 | 1 | | 2 | Anti-blowout pinion | Steel | Nickel plated | 1 | 1 | | • 3 | O-ring | NBR | | 1 | 1 | | • 4 | spacer ring | POM | | 1 | 1 | | • 5 | O-ring | NBR | | 1 | 1 | | • 6 | O-ring | NBR | | 1 | 1 | | 7 | Cam | Stainless steel | | 1 | 1 | | 8 | Spacer | POM | | 1 | 1 | | • 9 | Spacer | POM | | 1 | 1 | | 10 | Washer | Stainless steel | | 1 | 1 | | **11 | Snap ring | Steel | Nickel plated | 1 | 1 | | 12 | Piston | Die cast aluminium | | 2 | 2 | | • 13 | O-ring | NBR | | 2 | 2 | | • 14 | Antifriction ring | POM | | 2 | 2 | | • 15 | Thrust block | POM | | 2 [4] | 2 [4] | | 16 | Stop bolt retaining nut | Stainless steel | | 2 | 2 | | 17 | Stop bolt | Stainless steel | | 2 | 2 | | 18 | External spring | Steel | Painted | 0 | | | *** 19 | central spring | Steel | Painted | 0 | See spring | | 20 | internal spring | Steel | Painted | 0 | | | 21 | Left end cap | Die cast aluminium | Painted | 1 | 1 | | 22 | Right end cap | Die cast aluminium | Painted | 1 | 1 | | 23 | End cap seats | NBR | | 2 | 2 | | 24 | O-ring | NBR | | 2 | 2 | | 25 | End cap fixing screw | Stainless steel | | 8 | 8 | | 26 | Position indicator | Thermoplastic rubber TPE | | 1 | 1 | Parts subject to wear ^{**} Reinforced series DIN 471 - UNI 7436 | MOD | DRILLING
ISO 5211 | СН | Α | В | С | D | Е | F | G | Н | ØI | ØK | L | М | N | 0 | Р | Q | R | S | T
NPT | U | øv | |-----|----------------------|------|-------|------|------|------|------|------|------|------|------|------|-----------|------|------|------|------|------|------------------------|------------------------|----------|------|------| | 160 | F10 - F12 | 1.06 | 19.69 | 7.32 | 3.43 | 3.90 | 8.70 | 1.18 | 9.88 | 1.18 | 2.24 | 1.57 | 3.15/5.12 | 1.18 | 1.26 | 3.15 | 4.92 | 4.02 | 3/8-16 UNC
2Bx0.55" | 1/2-13 UNC
2Bx0.67" | 1/4" | 3.17 | 2.36 | With reference to the above diagram it can be noted that the torque of a double acting actuator remains constant through-out the complete action. The user can decide on which model to choose according to his/her own specific requirements, using the following guidelines: 1. Define the maximum torque of the valve to automate. - To obtain a safety factor increase the torque value chosen by 25-50% (subject to the type of valve and working conditions). - 3. Once the torque value suggested is obtained consult the torque chart and in relation to the corresponding air pressure find a torque value exact to or exceeding the one obtained. - Once the torque value is determined move horizontally to the column "model" to find the actuator model required. | | AIR SUPPLY PRESSURE (psi) | | | | | | | | | | | | |--------|--|------|------|------|------|------|------|------|--|--|--|--| | TYPE | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 115 | | | | | | | TORQUE OUTPUT DOUBLE ACTING ACTUATORS (in-Lbs) | | | | | | | | | | | | | DA 160 | 2804 | 3501 | 4196 | 4899 | 5596 | 6292 | 6987 | 8045 | | | | | With reference to the above diagram the torque of a spring return actuator is not constant but decreasing. This is due to the action of the springs that when compressed during air actuation counteract the piston movement and accumulate energy which will be available in a decreasing way during the rotation inversion. The torque given by the actuator is defined by four fundamental values. ## Opening rotation MAD = Actuator torque with unfolded springs MAC = Actuator torque with compressed springs. Closing rotation MMC = Torque with compressed springs MMD = Torque with unfolded springs The user can decide on which model to chose according to his/her own specific requirements, using the following guidelines: - 1. Define the maximum torque of the valve to automate - To obtain a safety factor increase the torque value chosen by 25-50% (subject to the type of valve and working conditions). - 3. Once the torque value suggested is obtained consult the torque chart and in relation to the corresponding air pressure find the torque value exact to or exceeding the one obtained, taking account of the lower value between the MMD and MAC values. - 4. Once the torque value is determined move horizontally to the column "model" to find the actuator model required.