PRM Liquid Filter Bags - Polypropylene

Industry Standard Liquid Filter Bags made with the highest grade material to offer you quality and efficiency in each bag.

Features:

- Constructed using 100% polypropylene fiber. Polypropylene bags are treated with a glazed finish to reduce fiber migration.
- Polypropylene meets FDA regulations for food contact under CFR21,Section 177.1520
- Silicone-free construction
- High dirt holding capacity
- Silicone-free construction
- Temperature Rating: 180°F
- Polypropylene Ring (standard)
 - Molded plastic with built-in handle for cleaner installation and disposal
 - Smooth plastic design prevents build-up of contaminants around top of bag
 - Collar is welded into place for stability

POLYESTER FELT COMPATIBILTY		
Mineral Acids	Excellent	
Organic Acids	Excellent	
Alkalis	Fair	
Oxidizing Acids	Good	
Animal/Vegetable Petro Oils	Excellent	
Organic Solvents	Good	
Micro Organisms	Excellent	

(888-TREAT-IT) • www.prmfiltration.com • sales@prmfiltration.com

PRM Liquid Filter Bags - Polypropylene Felt

Filter Bag Pressure Drop

The graph gives the clean pressure drop through a number 2 size bag for water, 1 CPS @ 70°F

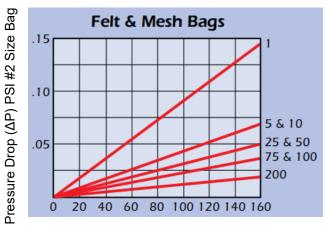
To determine the pressure drop caused by the filter bag, follow these steps:

Step 1:

Select the type of bag, micron rating and flow rate, determine the pressure drop for water, 1 cps @ 70°F for a size #2 bag.

Step 2:

Correct for bag size from the Bag Size Correction table at the right if the bag size is different than a #2 size.


Step 3:

If the viscosity of the liquid is greater than 1 cps (water@ 70°F.), multiply the result from step 2 by the proper correction factor from the Viscosity Correction table at the right. The value obtained in Step 3 is the clean pressure drop caused by the filter bag.

The most important factor in selecting a housing size for a filter bag application is the initial total clean pressure drop for the system, ΔPS . The pressure drop, ΔPS , consists of the pressure drop caused by the housing ΔPH with the bag basket in place plus the pressure drop caused by the filter bag ΔPB .

SYSTEM PRESSURE DROP = \triangle PS = \triangle PH + \triangle PB

For new applications, the clean pressure drop of the system, housing and bag should be 2.0 PSI or less. The lower the value is, the more contaminant a bag will hold.

Flow GPM Water (1cps@70°F)

Bag Size Correction		
Bag Size	Dia. X Length	Multiply By
#2	7.2 x 32	1
#4	4.3 x 14	4.5
#1	7.2 x 16	2.25

Viscosity Correction		
Viscosity CPS	Correction Factor	
50	4.5	
100	8.3	
200	16.6	
400	27.7	
800	50.0	
1000	56.2	
1500	77.2	
2000	113.6	
4000	161.0	
6000	250.0	
8000	325.0	
10000	430.0	

(888-TREAT-IT) • www.prmfiltration.com • sales@prmfiltration.com