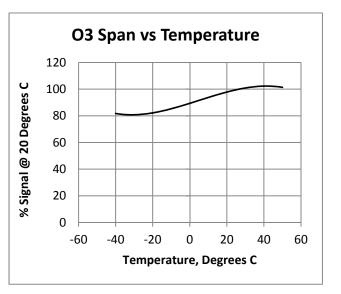
E-Chem Sensor Data Model H10-14 Low Range Ozone (O₃) Smart Sensor

Model H10-14 Ozone sensor is an electrochemical device used for the detection of O_3 gas leaks in ambient air. It is designed to be used in conjunction with ATI's Model C16 portable leak detector or Models D12 or F12 toxic gas transmitters. H10-14 sensors contain internal electronics and memory that control sensor bias and store calibration data, calibration history, and limited data log.

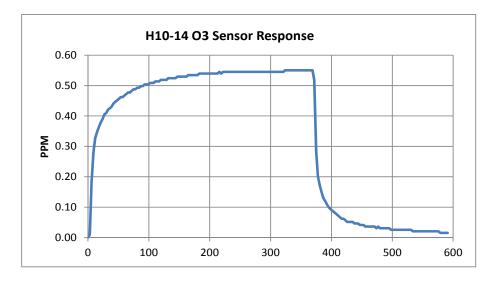
 O_3 sensors operate by generating a small electrical current proportional to the partial pressure of ozone gas in the surrounding air. The current is the result of the reduction of ozone on the surface of a catalytic electrode, with a resulting signal that is linear with respect to ozone concentration. Ozone sensors are 3-electrode sensors and require oxygen to function.

$O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$

The table below provides the operational and performance specifications for the H10-14 O_3 sensor. Contact ATI or your ATI local representative with questions regarding specific applications for this sensor.


Primary Response	Volume % O ₃	
Measuring Range	0.01 - 5.00 PPM V/V (0.02 - 9.8 mg/m ³)	
Sensor Current	0.25 μA/PPM Nominal	
Sensor Current Variability	0.1 – 0.5 μA/PPM	
Linearity	±3%	
Response Time	$T_{50} = 10$ Seconds, $T_{90} = 90$ seconds	
Temperature Range	-20° to +50° C	
Memory	Internal e ² memory for Calibration Data and Calibration History	
Pressure Range:	- 5 to + 50 PSIG	
Pressure Variability	Output proportional to O ₃ partial pressure	
Operating Humidity	0-99% RH Non-condensing (Intermittent)	
	20-90% RH Non-condensing (Continuous)	
Zero Stability	± 0.02 PPM at constant temperature	
	± 0.03 PPM over ±10° C ambient temperature change	
Span Drift	< 2%/Month	
Temperature Effect on Span	See Graph	
Operating Life	> 24 Months Typical in Clean Conditions	
Storage Recommendation	Recommended maximum of 1 year for best sensor performance.	
_	Store at less than 25° C in a sealed container.	
Size	1" D x 1.25" H (25 mm x 32 mm)	
Weight	17 grams	

E-Chem Sensor Data Model H10-14 Low Range O₃ Smart Sensor


H10-14 Low Range Ozone sensors exhibit response to certain other gases. When applying this sensor to specific applications, it is good practice to verify whether or not any of these potential interferences are present and might present interference issues. Note that cross-sensitivity data is approximate and based on exposures under 100 PPM. In some cases, response to other gases may not be stable or may be transient.

Gas	Symbol	Response to 1 PPM
Hydrogen Sulfide	H ₂ S	-0.1
Nitrogen Dioxide	NO ₂	0.15
Sulfur Dioxide	SO ₂	-0.01
Methyl Mercaptan	CH₃SH	-0.03
Chlorine	Cl ₂	1
Hydrogen Cyanide	HCN	-0.5
Ethanol (alcohol)	C ₂ H ₆ O	None
Ammonia	NH ₃	None
Hydrogen Chloride	HCI	None
Carbon Monoxide	CO	None
Carbon Dioxide	CO ₂	None
Nitric Oxide	NO	None
Hydrogen Fluoride	HF	None

Electrochemical sensors exhibit a response that is temperature dependent to a limited extent. Although the effect of temperature is not large, it is useful to be aware of the effect. Shown below is a graph showing the effect on span of changing temperature.

Shown below is a typical response time graph for an O_3 sensor. Note that this response time can become significantly slower at temperatures below -20°C.

