

400G

Features

- QSFP-DD MSA compliant
- 8 parallel lanes on 850nm center wavelength
- Compliant to IEEE 802.3bs Specification
- Up to70m transmission on Multi mode fiber (MMF) OM3 with FEC
- 8x53.125Gb/s electrical interface (400GAUI-8)
- Data Rate 53.125Gbps (PAM4) per channel
- Maximum power consumption 11W
- MPO-16 connector
- Operating case temperature: 0°C ~70°C
- RoHS compliant

Applications

- Data Center Interconnect
- 400G Ethernet
- Infiniband interconnects
- Enterprise networking

Description

This product is a 400Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module. It provides increased port density and total system cost savings. The QSFP-DD full-duplex optical module offers 8 independent transmit and receive channels, each capable of 53.125Gb/s operation for an aggregate data rate of 400Gb/s on 100 meters of OM4 multi-mode fiber.

An optical fiber cable with an MTP/MPO-16 connector can be plugged into the QSFP-DD SR4 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an QSFP-DD MSA-compliant edge type connector.

The central wavelengths of all the 8 parallel lanes are 850nm. It contains an optical MPO-16 connector for the optical interface and a 60-pin connector for the electrical interface. Host FEC is required to support up to 70m OM3 multi-mode fiber transmission.

The product is designed with form factor optical/electrical connection and digital diagnostic interface according to the QSFP-DD Multi-Source Agreement (MSA) Type 2. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Absolute Maximum Ratings

Parameter Parame	Symbol	Min.	Max.	Units	Note
Storage Temperature	Tst	-40	85	°C	
Supply Voltage	Vcc	-0.5	3.6	V	
Case Operating Temperature	\mathcal{T}_{op}	0	70	°C	
Humidity (non-condensing)	RH	0	85	%	

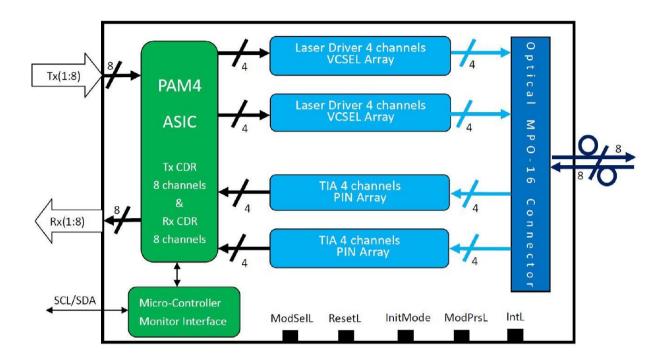
Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units	Note
Operating Case Temperature	Tca	20		60	°C	
Supply Voltage	V _{cc}	3.135	3.3	3.465	V	
Data Rate, each Lane	fd		26.5625		GBd	PAM4
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio				1x10 ⁻¹²		1
Link Distance with OM3	D	0.5		70	М	2

Notes:

- 1. FEC provided by host system.
- 2. FEC required on host system to support maximum distance.

Diagnostic Monitoring


Parameter	Symbol	Accuracy	Unit	Notes
Temperature monitor absolute error	DMI_Temp	± 3	°C	
Supply voltage monitor absolute error	DMI_VCC	± 0.1	V	
Channel RX power monitor absolute error	DMI_RX_Ch	± 2	dB	1
Channel Bias current monitor	DMI_lbias_Ch	± 10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	± 2	dB	1

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Transceiver Block Diagram

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Note
Center Wavelength	λ C	840	850	860	nm	
Data Rate, each Lane		53.	.125 ± 100 p	ppm	GBd	
Modulation Format			PAM4			
	Tr	ansmitter				
RMS Spectral Width	$\Delta \lambda_{rms}$			0.6	Nm	Modulated
Average Launch Power, each Lane	P_{AVG}	-6		4	dBm	1
Optical Modulation Amplitude	П	4		2	dD.aa	0
(OMA _{outer}), each Lane	P_{OMA}	-4		3	dBm	2
Launch Power in OMA _{outer} minus		5			dD	
TDECQ, each Lane		-5			dB	
Transmitter and Dispersion Eye Closure	TDECQ			4	dB	
for PAM4, each Lane	IDECQ			4	иБ	
TDECQ -10*log ₁₀ (C _{eq}),each Lane				3.4	dB	
Extinction Ratio	ER	3			dB	
Optical Return Loss Tolerance	TOL			12	dB	
Average Launch Power of OFF	Poff		20	-30	dBm	
Transmitter, each Lane	FUII			-30	иын	
	I	Receiver				
Damage Threshold, each Lane	THd	5			dBm	3
Average Receiver Power, each Lane		-7.9		4	dBm	4
Receiver Power (OMA _{outer)} , each Lane				3	dBm	
Difference in Receiver Power between				4.1	dD	
any Two Lanes (OMA _{outer})				4.1	dB	
Receiver Sensitivity (OMA _{outer}), each	SEN			-7	dBm	5
Lane	OLIV			-1	dDill	
Stressed Receiver Sensitivity in	SRS			-3	dBm	6
OMAouter						
Receiver Reflectance	R_R			-12	dB	
LOS Assert	LOSA	-30			dBm	

LOS De-assert LOSD -12 dBm

LOS Hysteresis	LOSH	0.5	dB
Stres	sed Conditions for St	ress Receiver Sensitivity (N	lote 7)
Stressed Eye Closure for PAM4 (SE	CQ),	1	dB
Lane under Test		4	ub
OMA _{outer} of each Aggressor Lane		3	dBm

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant, however, a value above this does not ensure compliance.
- 2. Even if the TDECQ < 1dB, the OMA_{outer} (min) must exceed the minimum value specified here.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level..
- 4. Average receiver power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 5. Receiver Sensitivity OMA_{outer} each lane (max) is informative and is defined for a BER of 2.4x10⁻⁴
- 6. Measured with conformance test signal at receiver input for the BER of 2.4x10⁻⁴.
- 7. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Electronical Characteristics

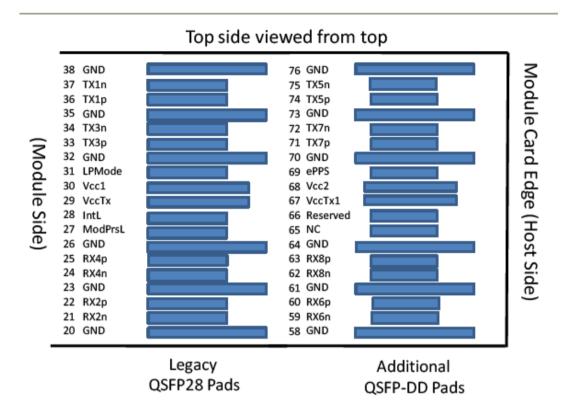
Parameter	Symbol	Min.	Тур.	Max.	Units	Note
Power Consumption				11	W	
Supply Current	lcc			3.33	Α	
	Trans	smitter (each	Lane)			
Signaling Rate, each Lane	TP1	26.5	625 ± 100 pp	om	GBd	
Differential pk-pk input Voltage Tolerance	TP1a	900			mVpp	1
Differential Termination Mismatch	TP1			10	%	
Differential Input Return Loss	TP1	IEEE 802.3- 2015 Equation (83E-5)			dB	
Differential to Common Mode Input Return Loss	TP1	IEEE 802.3- 2015 Equation (83E-6)			dB	
Module Stressed Input Test	TP1a	, ,	E 802.3bs 120	E 3.4.1		2
Single-ended Voltage Tolerance Range (Min)	TP1a		-0.4 to 3.3		V	
DC Common Mode Input Voltage	TP1	-350		2850	mV	3
	Red	eiver (each L	ane)			
Differential Peak-to-Peak Output Voltage	TP4			900	mVpp	
AC Common Mode Output Voltage, RMS	TP4			17.5	mV	
Differential Termination Mismatch	TP4			10	%	
Differential Output Return Loss	TP4	IEEE 802.3-2015 Equation (83E-2)			mV	

Common to Differential Mode Conversion Return Loss IEEE

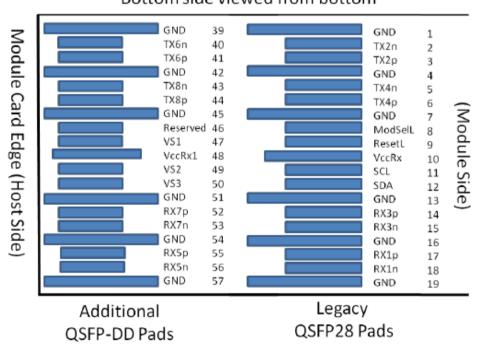
TP4

802.3-2015

Equation


		(83E-3)				
Transition Time, 20% to 80%	TP4	9.5			ps	
Near-end Eye Symmetry Mask Width (ESMW)	TP4		0.265		UI	
Near-end Eye Height, Differential	TP4	70			mV	
Far-end Eye Symmetry Mask Width (ESMW)	TP4		0.2		UI	
Far-end Eye Height, Differential	TP4	30			mV	
Far-end Pre-cursor ISI Ratio	TP4	-4.5		2.5	%	
Common Mode Output Voltage (Vcm)	TP4	-350		2850	mV	3

Notes:


- 1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 2. Meets BER specified in IEEE 802.3bs 120E 1.1
- 3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

Pin Assignment and Description

Bottom side viewed from bottom

Pin Descriptions

PIN	Logic	Symbol	Name / Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter inverted data input	
3	CML-I	Tx2p	Transmitter non-inverted data input	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter inverted data input	
6	CML-I	Tx4p	Transmitter non-inverted data input	
7		GND	Ground	1
8	LVTTL-I	MoDSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3v Receiver Power Supply	2
11	LVCMOS-I/O	SCL	2-wire Serial interface clock	
12	LVCMOS-I/O	SDA	2-wire Serial interface data	
13		GND	Ground	1
14	CML-O	RX3p	Receiver non-inverted Data Output	
15	CML-O	RX3n	Receiver inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver non-inverted Data Output	
18	CML-O	Rx1n	Receiver inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3v Power supply transmitter	2
30		Vcc1	+3.3v Power supply	2
31	LVTTL-I	LPMode	Low Power Mode	2
32		GND	Ground	1

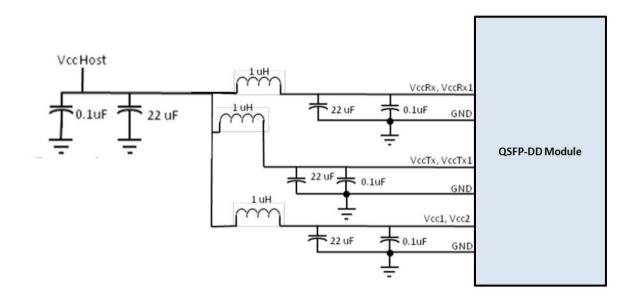
33 CML-I Tx3p Transmitter Non-Inverted Data Input

34	CML-I	Tx3n	Transmitter Inverted Data Input	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Input	
38		GND	Ground	1
39		GND	Ground	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	
42		GND	Ground	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	
45		GND	Ground	1
46		Reserved	For future use	
47		VS1	Module Vendor Specific 1	
48		VccRx1	3.3V Power Supply	
49		VS2	Module Vendor Specific 2	
50		VS3	Module Vendor Specific 3	
51		GND	Ground	1
52	CML-O	Rx7p-	Receiver Non-Inverted Data Output	
53	CML-O	Rx7n	Receiver Inverted Data Output	
54		GND	Ground	1
55	CML-O	Rx5p-	Receiver Non-Inverted Data Output	
56	CML-O	Rx5n	Receiver Inverted Data Output	
57		GND	Ground	1
58		GND	Ground	1
59	CML-O	Rx6n-	Receiver Inverted Data Output	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	
61		GND	Ground	1
62	CML-O	Rx8n	Receiver Inverted Data Output	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	
64		GND	Ground	1
65		NC	No connect	3
66		Reserved	For future use	3
67		VccTx1	3.3V Power Supply	2
68		Vcc2	3.3V Power Supply	2


69 LVTTL-I ePPS Precision Time Protocol (PTP) reference clock input 3

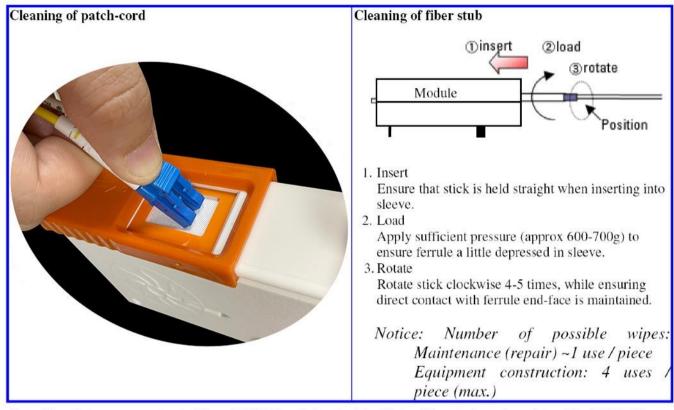
70		GND	Ground	1
71	CML-I	Тх7р	Transmitter Non-Inverted Data Input	
72	CML-I	Tx7n	Transmitter Inverted Data Input	
73		GND	Ground	1
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	
75	CML-I	Tx5n	Transmitter Inverted Data Input	
76		GND	Ground	1

Notes:


- 1. QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccRx, RccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector. VccRx, VccRx1, Vccl, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The corrector Vcc pins are each rated for a maximum current of 1000mA.
- 3. All Vendor Specific, Reserved, No connect and ePPS (if not used) pins may be terminated with 50 Ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10k ohms and less than 100pF.
- 4. Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for pad locations) Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, followed by 3A, 3B.

MPO-16 Optical Connector Interface

Recommended Power Supply Filter



Host Board Power Supply Filteri

Optical Receptacle Cleaning Recommendations:

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using a NTT international Cletop® stick type and HFE7100 cleaning fluid. Before the mating of patch-cord, the fiber end should be cleaned up by using Cletop® cleaning cassette.

Note: The pictures were extracted from NTT-ME website. And the Cletop® is a trademark registered by NTT-ME

Ordering Information

Model Number	Part Number	Voltage	Temperature
400G QSFP-DD SR8	OPDY-MX1-85-CB	3.3V	0°C to 70 °C

Modification History

Revision	Date	Description
A1	Oct. 2018	Initial Release

Note: All information contained in this document is subject to change without notice.