MT Series

50-80kW I Three Phase I 4 MPPTs

The second generation of GoodWe MT Series inverter is suited for medium and large scale commercial rooftops and ground-mounted solar PV systems where maximum versatility and profitability are important. With its compact design and power boost function, the Goodwe MT series of the new generation can provide a 150% continuous maximum AC output power overload, offering a faster return on investment. The start-up voltage is 200 V , much lower than other products, which makes the inverter start up earliere therefore generating more power over time.

(AN) Power line communication

Technical Data	GW50KN -MT	$\begin{aligned} & \text { GW60KN } \\ & \text {-MT } \end{aligned}$	GW50KBF -MT	GW60KBF -MT	GW75KBF -MT	GW80KBF -MT	GW70KHV -MT	GW80KHV -MT	$\begin{gathered} \text { GW75K } \\ \text {-MT } \end{gathered}$	$\begin{aligned} & \text { GW80K } \\ & \text {-MT } \end{aligned}$
Input										
Max. Input Voltage (V)	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
MPPT Operating Voltage Range (V)	$200 \sim 1000$	200 ~ 1000	200 ~ 1000	200 ~ 1000	200 ~ 1000	200 ~ 1000	$200 \sim 1000$	200 ~ 1000	200 ~ 1000	200 ~ 1000
Start-up Voltage (V)	200	200	200	200	200	200	200	200	200	200
Nominal Input Voltage (V)	620	620	620	620	750	800	750	800	600	620
Max. Input Current per MPPT (A)	$\begin{gathered} 33 / 33 / 1 \\ 22 / 22 \end{gathered}$	33	30	44	44	39	33	44	44	44
Max. Short Circuit Current per MPPT (A)	$\begin{gathered} 41.5 / 41.5 / \\ 27.5 / 27.5 \\ \hline \end{gathered}$	41.5	37.5	55.0	55.0	54.8	41.5	55.0	55.0	55.0
Number of MPP Trackers	4	4	4	4	4	4	4	4	4	4
Number of Strings per MPPT	3/3/2/2	3	2	3	3	3	3	4	4 (Standard), 3 (Optional, Support bifacial module)	3 (Standard, Support bifacial module), 4 (Optional)
Output										
Nominal Output Power (W)	50000	60000	50000	60000	75000	80000	70000	80000	75000	80000
Nominal Output Apparent Power (VA)	50000	60000	50000	60000	75000	80000	70000	80000	75000	80000
Max. AC Active Power (W)	$\begin{gathered} \text { 55000; } 57500 \\ @ 415 V^{\star 1} \end{gathered}$	$\begin{gathered} 66000 ; 69000 \\ @ 415 V^{\star 1} \end{gathered}$	$\begin{gathered} 55000 ; 57500 \\ @ 415 V^{11} \end{gathered}$	$\begin{gathered} 66000 ; 69000 \\ @ 415 V^{\star 1} \end{gathered}$	82500*1	88000*1	77000*1	88000*1	75000	88000*1
Max. AC Apparent Power (VA)	$\begin{gathered} 55000 ; 57500 \\ @ 415 V^{\star 2} \end{gathered}$	$\begin{gathered} 66000 ; 69000 \\ @ 415 V^{\star 2} \\ \hline \end{gathered}$	$\begin{gathered} 55000 ; 57500 \\ @ 415 V^{2} \\ \hline \end{gathered}$	$\begin{gathered} 66000 ; 69000 \\ @ 415 V^{2} \end{gathered}$	82500*2	88000*2	77000*2	88000*2	75000	88000*2
Nominal Output Voltage (V)		400, 3L / N /	PE or 3L / PE		500, 3L / PE	540, 3L / PE	500, 3L / PE	540, 3L / PE	400, 3L / N /	PE or 3L / PE
Nominal AC Grid Frequency (Hz)	$50 / 60$	50 / 60	50 / 60	$50 / 60$	50 / 60	50 / 60	50 / 60	50 / 60	50 / 60	$50 / 60$
Max. Output Current (A)	80.0	96.0	80.0	96.0	95.3	94.1	89.0	94.1	133.0	133.0
Power Factor				~ 1 (adjusta	able from 0.8	lagging to 0	0.8 leading)			
Max. Total Harmonic Distortion	<3\%	<3\%	<3\%	<3\%	<3\%	<3\%	<3\%	<3\%	<3\%	<3\%
Efficiency										
Max. Efficiency	98.7\%	98.8\%	98.8\%	98.8\%	99.0\%	99.0\%	99.0\%	99.0\%	98.8\%	98.8\%
European Efficiency	98.3\%	98.5\%	98.3\%	98.3\%	98.4\%	98.4\%	98.4\%	98.4\%	98.3\%	98.3\%
Protection										

| PV String Current Monitoring Integrated |
| :--- | | PV Insulation Resistance Detection Integrated |
| :---: | Residual Current Monitoring Integrated PV Reverse Polarity Protection Integrated Anti-islanding Protection Integrated AC Overcurrent Protection Integrated AC Short Circuit Protection Integrated AC Overvoltage Protection Integrated DC Switch Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated

| DC Surge Protection | Type II |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC Surge Protection | Type II |
| AFCI | Optional |

PID Recovery Optional Optional Optional Optional Optional Optional Optional Optional Optional Optional

General Data

Operating Temperature Range $\left({ }^{\circ} \mathrm{C}\right)$	$-30 \sim+60$									
Relative Humidity	$0 \sim 100 \%$									
Max. Operating Altitude (m)	4000	4000	4000	4000	4000	4000	4000	4000	≤ 4000	≤ 4000
Cooling Method				Smart Fan Cooling			Fan Cooling			

Cooling Method	Smart Fan Cooling								Fan Cooling	
User Interface	LED, LCD (Optional), WiFi + APP			LED, WiFi + APP			LED, LCD (Optional), WiFi + APP	LED, WiFi + APP		
Communication	RS485, WiFi or PLC (Optional)								RS48	NiFi, PLC onal)
Weight (kg)	59.0	64.0	60.0	65.0	65.0	65.0	60.0	65.0	70.0	70.0
Dimension ($\mathrm{W} \times \mathrm{H} \times \mathrm{D} \mathrm{mm}$)	$586 \times 788 \times 264$			$586 \times 788 \times 267$			$\begin{gathered} 586 \times 788 \\ \times 264 \end{gathered}$	$586 \times 788 \times 267$		
Topology	Non-isolated									
Self-consumption at Night (W)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ingress Protection Rating	IP65									
DC Connector	MC4	mm²)	-	-	-	-	-	-	-	$\begin{gathered} \mathrm{MC} 4 \\ \left(4 \sim 6 \mathrm{~mm}^{2}\right) \end{gathered}$

[^0]
[^0]: *1: For Chile Max. AC Active Power (W): GW50KN-MT is 50000; GW60KN-MT is 60000 ; GW50KBF-MT is 50000 ; GW60KBF-MT is 60000; GW75KBF-MT is 75000 ; GW80KBF-MT is 80000 ; GW70KHV-MT is 70000; GW80KHV-MT is 80000 ; GW80K-MT is 80000 .
 *2: For Chile Max. AC Apparent Power (VA): GW50KN-MT is 50000; GW60KN-MT is 60000; GW50KBF-MT is 50000 ; GW60KBF-MT is 60000; GW75KBF-MT is 75000 ;
 GW80KBF-MT is 80000 ; GW70KHV-MT is 70000 ; GW80KHV-MT is 80000 ; GW80K-MT is 80000 .
 *: Please visit GoodWe website for the latest certificates.

