
Secure Coding Practices

Gaurav Sood





Agenda
1. Secure Code - Why?
2. OWASP Top 10
3. Demos
4. Basic Security Practices



The Why?
1. It takes one chink in the armour2. Results:- Loss of system access- Information Disclosure- Operational Interruption- Financial Loss- Reputation- Lawsuits



OWASP Top 10
- OWASP -> Open Worldwide Application Security Project- Top 10 -> list of most critical security risks to web applications- Current List:- Broken Access Control- Cryptographic Failure- Injection- Insecure Design- Security Misconfiguration- Vulnerable Libraries- Server Side Request Forgery (SSRF)- Data Integrity Failures- Authentication Failures- Monitoring Failures



Broken Access Control
- Users can do stuff outside of their permission set
- Violation of Least Privilege
- Missing access control policies



Broken Access Control
Impact
- accessing profile of other users
- elevation of privilege
- accessing unauthorized pages



Vulnerable Libraries
- Insecure dependencies -> maven, gradle, node, pip



Injection
- Untrusted user data sent to application that can lead an

attacker to run commands or access unauthorized data
- Common Types:

- SQL Injection (SQLi)
- Cross Site Scripting (XSS)
- Command Injection



Injection
- Impact

- leaking privileged information
- remote code execution



SQLi
- Payloads for params that directly

deal with the database
- Impact

- Information disclosure
- Tamper with existing information



XSS
- Malicious scripts injected into

websites
- Impact

- Session Hijacking
- Data theft / disclosure
- Phishing



Command Injection
- OS commands executed through payloads
- Impact

- System compromise
- RCE
- Privilege Escalation



Security Misconfiguration
- Default configuration -> credentials, initial settings
- Unencrypted communication
- Excessive permissions



Cryptographic Failures
- Failures / lack of cryptographic controls- Common Failures:- Weak cryptographic ciphers- Lack of TLS- Unsalted password hashes
Impact- cracking password hashes throughRainbow Tables- spying on network traffic



Server Side Request Forgery (SSRF)
- Allows attacker to make requests to

unintended locations



Demos
1. Broken Access Control -> Path Traversal2. Injection -> Cross Site Scripting (XSS)





Solution



Basic Security Practices
1. Validate Input2. Heed Warnings3. Securely Architect4. Keep it Simple5. Deny By Default6. Least Privilege7. Security Testing8. Defense In Depth



Validate Input
- Accept properly formed data
- Syntactic and semantic
- Regex for preventing SQLi, XSS, Path Traversal
- File uploads



Heed Warnings
- IDEs
- Compilers / Interpreters
- Dependency management (maven, npm)



Securely Architect
- Secure Communication between resources
- Encryption of data at rest
- RBAC
- Secure access to servers
- Audit access and events extensively



Keep It Simple
- Simplicity as key factor in code design
- Easier unit, integration and security tests
- Maintainable



Deny by Default
- Unless explicitly authenticated and authorized



Least Privilege
- Access only resources for which user has access to with minimum

privileges
- Scoped APIs
- Role Based Access Control (RBAC)
- Separation of Duties (SoD)



Security Testing
- Static Code Analysis (SAST)
- Dynamic Code Analysis (DAST)
- Penetration Testing



Defense In Depth
- Multiple layers of security
- Authorization at infrastructure and application level
- Sanity checks everywhere
- MFA



Code Review
- Extensive code review
- Open Redirects,
- Improper Input Sanitization
- Vulnerable Libraries
- Lower grade encryption /

hashing
- Improper integrity checks



Code Review



Patch Libraries
- Continuous patching of

dependencies
- Static Code Analysis



Takeaways
- Why secure code and application security is important
- OWASP Top 10 and common vulnerabilities
- Basic Security Practices



Questions?



Feedback




