
Demystifying
Multi-tenancy
By Gaurav Singh

gauravsingh@xecurify.com



About me
• The SaaSsy Engineer
• Collaborated on designing and developing
multiple SaaS products

• Coder/Gamer



Agenda

• Security Practices

• Single Tenant Architecture
• Challenges of Single-tenancy
• Multi-tenant Architecture
• Key Benefits of Multi-tenancy
• Designing a SaaS
• Achieving Multi-tenancy
• Scalability
• Analytics
• Onboarding
• Tenant Configuration



• Dedicated Instance of the software for
each tenant.

• Each instance of the software can be
customized as per tenant’s business
needs.

Single Tenant
Architecture

Tenant A Tenant B Tenant C



Single Tenant
Architecture
• Reliable performance, advanced data
security and backup, complete control.

• Examples: Oracle Cloud, ServiceNow

Tenant A Tenant B Tenant C Tenant D



Challenges of Single-tenancy

Complex Management
Supporting customized instance for each
tenant is complex

Expensive
infrastructure
High setup, customization and
maintenance costs.

Underutilized
resources
Not all resources may be utilized,
making the system inefficient.



Multi-tenant
Architecture
• Software instance and its infrastructure
serve multiple tenants.

• Tenants share database and
computing resources but their data is
isolated.



Multi-tenant
Architecture
Examples
• Yahoo, Gmail, Outlook
• Google Drive, OneDrive, Dropbox
• Shopify, Wix
• Slack, Skype, Trello

A

B C

D



Customization and 3rd
Party integration.

Easy Maintenance and
Upgrade Management

Efficient use of
Computing Resources

How is it better?



Rapid OnboardingCost-Effective
Infrastructure

Fast Scaling of
Resources

How is it better?



Designing a
SaaS

Achieving Multi-tenancy
Scalability
Analytics
Onboarding process
Tenant configuration



Achieving
Multi-tenancy
• Define a tenant
• Tenant Isolation



Define a
Tenant
• Depends on who your customer is.
• What’s your business model:

B2B or B2C

B2B

B2C



B2B tenants
• Organizations, and departments or
teams.

• Need regulatory compliance, the
isolation of their data, and ensuring
that you meet a specified service-level
objective (SLO), like uptime or service
availability.

B2B

AW
S

Salesforce
Slack Shopify



B2C tenants
• Individual users, families, clubs or
associations.

• Need to be concerned about how you
handle personal data, and the data
sovereignty laws within each
jurisdiction that you serve.

B2C

Netflix Youtube
DuolingoDiscord



Tenant
Isolation
• Governs how a tenant’s data is
protected within a multi-tenant
environment.

• Authentication & Authorization aren’t
equal to isolation.

• Isolation is not only a resource-level
construct.

Silo model Pool model

Bridge model Tiered model



Web App

Microservices

Web App

Microservices

Virtualization /
Silo Model
• Divides tenants into clusters with
isolated infrastructure resources.

• Highest maintenance cost
• Typically used for Single-tenant SaaS
apps such as Oracle Cloud.

Tenant A Tenant B



Compute Resources

Microservices

Pool Model
• Users share the infrastructure and
resources.

• Cost efficient, agile and streamlined.
• Prone to issues like Noisy neighbor.

Tenant B Tenant CTenant A



Bridge Model
• Combination of Silo and Pool models.
• Tenants share a database or server
while using isolated microservices or
vice-versa.

• Can be used in cases where some
tenant’s data is subject to strict laws
and need to be isolated from other
tenants

Web App

Microservices

Web App

Microservices

Tenant A Tenant B



Tiered Model
• Isolation relies on customer’s
subscription tier.

• Typically free plan offer a single shared
infrastructure and premium tiers offer
dedicated environment and resources.

• For example, AWS offers dedicated
Server Hosting in addition to their
lower-cost shared hosting.

Compute Resources

Microservices

Tenant A Tenant B

Compute Resources

Microservices

Tenant C

Free Subscription Premium Subscription



Designing a
SaaS

Achieving Multi-tenancy
Scalability
Analytics
Onboarding process
Tenant configuration



Scalability
• Few tenants may monopolize CPU, memory,
and storage, leaving other customers with
fewer resources.

Resource Strain

• Microservices Architecture
• Container Orchestration
• Database Isolation

Scalable Architecture



Users Service Ticket Service

Notification
Service

Microservices
• In this architectural style, a large
application is segregated into smaller
independent parts, and each part
having its own realm of responsibility.

• Provides decentralized service
discovery mechanisms to ensure the
application is highly scalable.

Helpdesk Application



Container
Orchestration
• Automates the provisioning,
deployment, networking, scaling,
availability, and lifecycle management
of containers.

• Kubernetes, Docker Swarm, Amazon
EKS

Self-Healing

Automated Rollbacks

Auto Scaling

Load Balancing



Container
Orchestration
• Automates the provisioning,
deployment, networking, scaling,
availability, and lifecycle management
of containers.

• Kubernetes, Docker Swarm, Amazon
EKS

Users Service Ticket Service

Notification
Service

Helpdesk Application



Database
Isolation
• Shared: All users share the database.
Identifier columns separate their
information.

• Dedicated: Every tenant has a
separate database.

• Sharded: A single tenant’s data is
spread across multiple databases in
movable shards.

Tenant A Tenant B

Web App

Microservices

Tenant A Tenant B

Web App

Microservices

Tenant A
DB

Tenant B
DB

Tenant A Tenant B

Web App

Microservices

Shard 1 Shard 2

Shared Dedicated Sharded



Designing a
SaaS

Achieving Multi-tenancy
Scalability
Analytics
Onboarding process
Tenant configuration



Analytics
• Memory and Storage usage
• Active tenants per subscription tier.
• Periods of increased activity
• Expenses (per tenant and
subscription tier)

• Revenue (per tenant and
subscription tier)



Onboarding
• Onboarding new customers should
be seamless and straight forward.

• Involves training and support to
ensure customers can use the
application effectively.

• Comprehensive onboarding
materials, documentation, and
support channels.



Tenant
Configuration
• Custom Branding
• Specific Integrations
• Varying data retention policies



Designing a
SaaS

Achieving Multi-tenancy
Scalability
Analytics
Onboarding process
Tenant configuration



Security Practices
• Open Design: the security of your application shouldn’t
depend on the secrecy of how it’s built.

• Fail-safe default: security sensitive operations should be
allowed only when a certain conditions are met, and fail
otherwise.

• Confidentiality: define different permissions and access
levels to data for users.

• Least Privilege: a program/user should only have the
privileges they require and nothing more.

• No Caching of access control decisions.



Scan for Feedback

References
● https://learn.microsoft.com/en-
us/azure/architecture/guide/multitenant/consideration
s/tenancy-models

● https://docs.aws.amazon.com/whitepapers/latest/saa
s-tenant-isolation-strategies/the-isolation-
mindset.html

Q&A

https://learn.microsoft.com/en-us/azure/architecture/guide/multitenant/considerations/tenancy-models
https://learn.microsoft.com/en-us/azure/architecture/guide/multitenant/considerations/tenancy-models
https://learn.microsoft.com/en-us/azure/architecture/guide/multitenant/considerations/tenancy-models
https://docs.aws.amazon.com/whitepapers/latest/saas-tenant-isolation-strategies/the-isolation-mindset.html
https://docs.aws.amazon.com/whitepapers/latest/saas-tenant-isolation-strategies/the-isolation-mindset.html
https://docs.aws.amazon.com/whitepapers/latest/saas-tenant-isolation-strategies/the-isolation-mindset.html


Thank you
Email
gauravsingh@xecurify.com

Social Media
linkedin.com/in/gaurav-singh-3a71b1108


