Cloud Native Resilient
Architectures & Security

By Abhishek Gautam

mMiniGrange

Multiverse Cloud Architect
Over 17 years of experience
Technology Driven

Java Enthusiast

\dentityShiejy

*rf-&{

mMiniGrange

\dentityshield

T —— — — A ————

[———————— ————— —————— ———————————)

| |

| | |
l Containerization Architecture I |
| | 2023 Industry Trends |
i Microservices Architecture i i
: | Overall Architecture |
| Interservice Communications | \e |
| | v I
i Cloud-Enabled Data Engineering i Architectural Best Practices i
DevOps / DevSecOps	Industry Recognized
	Architectural Guides
Legacy Application Modernization	
: Hybrid Cloud Architecture :	

mMiniCyrange

\dentityshield

Introduction to Cloud-native Applications and Systems

Cloud computing — 2023 Industry and Market Trends

*('.&{

Organizations are finding more innovative ways to help them increasingly become digital and reimagining their business models.

The shift from public and private to ‘hybrid’ — McKinsey u The trend toward serverless computing is accelerating
The increase in the types and numbers of smart devices is ‘h i With business growth and expansion, organizations are
accelerating the push toward edge and hybrid architectures looking for advanced and innovative scalability solutions.

By 2025, 95% of the organizations would have made the u Use of containers / Kubernetes is strengthening by the day
leap to cloud-native — Gartner as organizations are gaining increased confidence — CNCF

@ Amazon, Microsoft, and Google (AMG) continue to define
the market currently at $180B and growing by 24% (IDC).

Cloud computing innovation is fueling advanced
applications (e.g. remote desktop, cognitive assistance)

u The cloud computing trends are universal across all

Complex cloud computing architectures is accelerating . .
industries.

general automation trends as well as AIOPs.

© © © ©¢

mMiniCyrange

\dentityShiejy

Introduction to Cloud-native Applications and Systems

Cloud Architecture Introduction

+('.,{

Ccsp . . .
(Cloud Service Provider) IT/ Driven by Business Requirements

Cloud / (Functional Requirements +
Digital Solution Non-Functional Requirements)

(i) / Container \
Business Logic / oA
Applications
~ J
| ‘
i Big Dat:
Database Services
-
Networking e
Securit
; E : 2 Compute
(B Services "
Services

Databases Compute Servers

Internal Users.
(Web traffic)

Customers / Users
(Web tratfic)

Technology /
Infrastructure Storage
Na—) /
[ttt s A e
;_Use multiple cloud services to stich a cloud solution. -
------------------------- —

mMiniGrange

\dentityShiejy

Introduction to Cloud-native Applications and Systems

Introduction to Cloud Native Systems and Applications

*r'-&{

Cloud-Native Applications / Technologies

B e — 0 S— O S— 0 S— O S 0 S— S 0 S G 0 S 6 G 6 S 0 S 6 S S 6 G 0 S— 0 S— 0 Se— S— 0 S— — S—

r

I“Cloud native technologies empower organizations to build and run scalable applications in !
. modern, dynamic environments such as public, private, and hybrid clouds. Containers,

. service meshes, microservices, immutable infrastructure, and declarative APIs exemplify

. this approach. These techniques enable loosely coupled systems that are resilient,

!manageable, and observable. Combined with robust automation, they allow engineers to

!make high-impact changes frequently and predictably with minimal toil.” (CNCF)

W e m— E— 0 S— 0 S— 0 Sm— O S— 0 S S 0 S S 0 S § S 0 S S 0 s 0 Gm— 0 Sm— O m—

|Legacy applications, which are modified enough to be able to runina |
cloud environment. J

P e — 0 m— e — 0 S— S 0 S E— 0 S— 0 — 0 G— Sm— 0 S— 0 S— 0 S— 0 S— S— S— —

Not born on the cloud.
Not optimized to run on the cloud.
Don’t make full use of the cloud features and strengths.

mMiniGrange

\dentityshield

Introduction to Cloud-native Applications and Systems

Key Building Blocks of Cloud Native Applications and Systems

00,

+('.,{

&e

AUTOMATION

——— Container
DEVOPS Container
(CI/CD) MICROSERVICES
loT / Gaming / Blockchain ———
/ Al/ML, etc. applications Other files ﬁ
N
=NTTTEZ ON-PREMISES
=) = SERVICE MESH DATA
f % CENTERS
Application Definition / Deployment CO’;‘]P;::::“)':'; 22::;’.?:;:,0" L -
Orchestration / Observability
Runtime Conlam(e:er‘?;uéllsnl'l)e (CRI/ ; " . RID
%o O180, S%m HYB
l0S! lanagemen " q- -F> cq_ -FD
et i) © ALotes
Privese f Publlc Hybod ° CLOUD INFRASTRUCTURE
IMMUTABLE INFRASTRUCTURE

Cloud native reference architecture by the CNCF

miniGirange

Containerization Architecture and Best Practices

Containerization — 2023 Industry and Market Trends

Containerization has provided organizations with the means to develop once and deploy on multiple platforms.

Containers and microservices are the foundation for
building cloud-native applications.

Containers along with microservices enable efficient
software delivery pipelines

O

The use of serverless in the context of containers is
accelerating. — DataDog

©Q

Large scale migration is occurring toward containers
(including legacy and cloud-native) — Docker

Almost half of all container implementations are in the

hyperscalers data centers — Omdia Research Adoption of containers is also accelerating the push toward

hybrid and multi-cloud implementations

Most state of the art applications such as Al, ML, etc. are
more effective when implemented using containers.

© ©¢

The use of container registries hosted at hyperscalers (e.g.
Azure, AWS, and Google) is increasing.

© ¢C

<&

More full-fledged Kubernetes implementations are u Numerous cloud products and solutions are built on
increasing (compared to smaller scale implementations) containers (e.g. MySQL, MangoDB, Kafka, etc.)

most 65% of worldwide organizations have adopted
use of containers and Kubernetes (as of early 2023)

mMiniGrange

\dentityshield

Containerization Architecture and Best Practices

Comparing Compute Instances for Running Applications

Most common configurations for running applications About Containers
Container 1 Container 2
App1 App2
App1l App2/

App1 App2 Libraries, Libraries, Mi iced Microservice2
etc. etc.

N et = o Libraries, etc. Libraries, etc.

(libraries, etc.) (Guest 0S) (Guest OS)

Container Engine Software
Hypervisor (e.g. Docker)

Host Operating System

Host Operating System

Host Server / Infrastructure

Host Server / Infrastructure

Host Server / Infrastructure

« Support both Windows and Linux workloads

Bare Metal Configuration VM Instances Containers and Microservices
Container Hosting, Management,
and Orchestration
Containers
Container DevOPs process * @ > ®®®®® ®®®®®
o9 . (V7]

mMiniCyrange

\dentityShigjy

Containerization Architecture and Best Practices

+('.,!

Key Elements in the Building and Running of Containers

Basic terminology related to containers

- i Dependencies
) SR, ST 05 f
{ (" Database j | Dependencies | !
7 4
: - & Run X — @
P o Command) : .
XS)) [=
Dockerfile Container Image Container Container Manifest File Container Repository
(Contains all commands (File "}"th AELERIOTS O (Runtime (contains metadata information (Collection of artifacts
needed to create a creating a container in a realization of a about a set of files to be related to containers and
Docker Image) runtime environment. container image) deployed in production.) the use of containers)

Container 1 Container 2

10 |

/_. {C)}@’ o IIchl mmz |
0 0 '

O [

Uibraries, ete. | Libraries, etc.

IjIIfl

o
2 : Container Orchestrators Container Engine Software
Container Engine ! T
(Container Runtime En%ironments [Msnags s govee contaners; Cont'amff: o —
Converts a container image into a. Kubernetes is an example) (Riins:containarizad jpiacetses)

-
container.)

Containers and Microservices

mMiniGirange

Containerization Architecture and Best Practices

Best Practices Related to Developing Containers

\dentityshield

+('.,{

- 2.5
DevOps (C1 / CD) Pipeline) —— @@
= T — (e — g-- pary @ ' -
<R E@ 5 & — 0= . @2@2@ egcag&:‘
Ei AN o Container
JS) Code Build i Sivel :
PHP Registry rchestrator
c# Container
W
‘ Microservice |
Best Practices in ‘Developing Containers’ | 4 i

e W}
\ Database ;

mMiniyrange

\dentityshield

Containerization Architecture and Best Practices

An Overview of the Containerization Lifecycle

“. ® =B

I Container

Dockerfile Container Image Container Repository Orchestrator

A
T gl

Container

>
A A
‘
.
-— . -

< -
»> P
A

Application Environment

] L

m I n I (
[|

%

Fapncal

Containerization Architecture and Best Practices

Best Practices Related to Operating Containers (General)

Cl / CD Pipeline
I —— (e —) —
> </> > m > 'Ea >
g 3\9@] ON =D
Code Build Test Cont'alner
Registry

Container
Orchestrator

Best Practices in Operating Containers

Use persistent data stores

Application Environment

'y 'y

e oaabss)

ilinf

A

Applications

A

&

Users

MiNi(

\dentityshield

+('.,{

range

Containerization Architecture and Best Practices

Factors Driving the Choice of Container Management and Orchestration Systems

Containers

Container CI/CD > @

NZliNg

Container Management

Container Hosting, Management,
and Orchestration

\7Js) N7l
%%ﬁi %%@

Options for Orchestration Tools

’ Advanced Management]

L)

’ Container Orchestration }

)

’ Container Services l

’ Infrastructure Provisioning l

Container deployment

Communications between containers
Cluster management (configuration and
monitoring)

Load balancing

Security (including policy management)
Automatic Rollbacks and Node Recovery
Data sharing with other containers
Logging and monitoring

Multiple-Cloud orchestration

Etc.

Factors Impacting Selection of Orchestration Tools

Extent of orchestration (Simple / Complex) - Features
Control and management of the environment
Administrative load

Cost

Ease of use

Etc.

\dentityshield

+(;,{

mMiniGjrange

Containerization Architecture and Best Practices N entityShicig
¢

Overview of Kubernetes Orchestration Architecture

cluster

*» Schedule various activities
through the worker nodes
Container (C) Pod + Provides the overall

governance of the cluster
Microservice Container 1

Share storage and + Ftc.
Libraries /

network resources
Other files

Kubernetes Cluster

: e ————— .L.I :
E : Master Node ! E
: | ,_ | :
. | Worker Node | i Worker Node | |

Control Plane

miniGrange

Containerization Architecture and Best Practices

Best Practices for Securing Containers

% ok

Code

Cl / CD Pipeline

= E— =]]

Build Test Cunt? ol
Registry

\dentityshield

+(;,!

Container Orchestration and management 4Cs of Security
(Code, Container,

% > E’]nuﬂ Cluster, and
(-]

T~ Cloud/Co-located)
Production

A

Kubernetes
Cluster

iy

(822]
dn ch
(822 ez
TgE Iy

Networking API Gateway

Container 1 Container 2

App1! App2!
Micresetvice |

Inherent Risks in Containers
Libraries, etc. Ubraries, etc.

* Containers are light
* Lots of containers
« Distributed environment

‘Container Engine Software

Host Server [Infrastructure

H 1

«Sharing and reusability

Containers and Microservices

mMiniGrange

Interservice Communications = 2023 Industry and Market Trends
Introduction to Cloud Interservice Communications

APl and API Gateways

gRPC and Interservice Communications

Interservice Communications using Message Queues

Service Mesh Enabled Interservice Communications

00

DEVOPS
(cIrco)

MICROSERVICES

loT / Gaming / Blockehain
/ AUML, etc. applications

AUTOMATION 2

5 PO SERVICEMESH |71
Z DATA™

ENGINEERING ANAGEMENT AND
ORCHESTRATION

afe, ofe, ole, | HYBRID
i | CLOUDS
cu.wmmmmcm p !
" IMMUTABLE INFRASTRUCTURE.
MINI(

\dentityShiejy

+('.,{

“range

\dentityshield

Microservices Architecture and Best Practices

Best Practices for Microservices Development

...................... G

i Monolithic
i ApplicationA |
Best Practices Related to Microservices Development
| [t]| [z] |
I : 4 ‘:ﬂ >§ i :
G N P Ty p—T———
| | i |]
Clou'd -n'f\tlve | APl communications, gRPC, others. I
i Application A | | __ I
| | - | 2] - z|
: — i
e | e
| a iy
N gL e ———|

« Structure development teams around microservices

mMiniGrange

Microservices Architecture and Best Practices

Database-Related Patterns when working with Microservices

Database Types
+ Structured and relational databases (e.g. Oracle, Mlcrosemcel M,cmsemcez | Microsenvice3 |
MySQL, and DB2) - - - " |
+ NoSQL databases .. .
« Graph Databases (e.g. AllegroGraph,
InfoGrid) ‘ o T
+ Key Value Databases (Cassandra, Redis, and
DynamoDB.)
* Others

Database Issues in Cloud-native Applications

+ Database ownership (Keep microservices loosely coupled)
» Anapplication made of multiple microservices may own various types
of databases (Polyglot persistence). Summary

. Ir?plerg:;;a;:;:\errrrl]ethods for distributed transactions 1. Select the right of databases for your
« APl Composition Pattern microservices (and supporting use cases)
» CQRS - Command Query Responsibility Segregation 2. Choose the right data patterns
+ “Shared-database-per-service pattern” (Anti-pattern) 3. Plan approaches to work with multiple data
+ Use of Multi-Model databases models.

mMiniGjrange

Microservices Architecture and Best Practices

Twelve-Factor Methodology / Approach

\dentityshield

Set of best practices related to the design and build of services based applications. Recommended by AWS and others.

* Codebase should not be repeated across apps
* Different versions of the codebase can be
deployed in multiple environments (dev/prod).

1. Codebase

« Each app must explicitly declare all its
dependencies and must be packaged part of the
application deployment package.

2. Dependencies

* An app’s environment configuration is not to be
stored in the code but should be in separate
files.

3. Configurations

* Each backing service should be treated uniformly
and swapping one resource for another should
be transparent to the application.

4, Backing Services

* The environment should maintain a strict
separation between the build, release, and run
stages.

5. Build / Release
/ Run

* Each process should be stateless. Therefore,
sticky sessions and stateful services are a
violation of the twelve-factor principle.

6. Processes

7. Port Binding

8. Concurrency

9. Disposability

10. Dev/Prod
Parity

11. Logging

12. Admin Processes

* Each process should expose itself to the outside
world using port numbers and not domain
names.

* Organize the application’s processes on a cloud
network in a manner that can allow only the
required parts of the application to be scaled.

* Each process can be started/shutdown rapidly
and gracefully (minimize startup and shutdown
times and leave a clean environment.)

* Minimize the gaps that exist between dev and
production environments. Gaps are classified as
tools, personnel, and time related.

* Each twelve-factor app should not concern itself
to writing and processing log events. This ensures
that the logging process works independently.

* Separate one-off administration processes and
encourage packaging and shipping of these
administrative functions with the app.

mMiniGjrange

Cloud Interservice Communications Technologies

Interservice Communications — 2023 Industry and Market Trends

Interservice Communications refers to technologies used in the communications of microservices.

The most common used communications protocols in the
u area of cloud-native include APIs, service mesh, gRPC, and
asynchronous communications.

u APIs and API gateways are one of the most used
communications frameworks for cloud-native applications.

The Cloud API Market has been growing at an annual rate
of 20%.

© ©

The use of service mesh is constantly increasing.

APIs, service mesh, Asynchronous communications, etc. all
are playing unique roles to bridge the communications gap

Sy

mMiniGrange

Cloud Interservice Communications Technologies

Introduction to Cloud Interservice Communications

Synchronous Communications

Asynchronous Communications

Selection Factors

+ Sender waits for a response from the
receiver

+ Most popular communication protocol is
HTTP/HTTPS

+ APIs are used when external entities try
to communicate with microservices

+ gRPC is the most popular RPC method
used for backend microservices
communications

« Sender doesn't wait for a response from
the receiver.

» Can be used without knowing the
communicating entities.

« Non real-time communications

» AMQP (Advanced Message Queuing
Protocol) is the most common protocol

» Message queues and brokers are used.
(e.g. Kafka and RabbitMQ queue)

Communications latency.

Real-time / Non- communications.

External access.

Monitoring and Observability.

Security (authentication).

Security (clear text / binary communications)
Communicating entities.

Traffic volume.

Number of microservices.

Communications message formats.

Request
Producers - Receivers
(Senders) "

Response

| APls || gRPC |

Message Queues

ey @D
sy - GETETTED

Messages

| Amep |

| Service Mesh |

\dentityshield

Cloud Interservice Communications Technologies

API and API Gateways

API Basics API Consumers Application Services

« One of the most common communications methods. *” - (@)

« Use APIs to request data directly from each of the microservices. + Web applications =

* APlIs are mostly used between external clients and servers. * loT Devices IR\ _ R @

« Use an API gateway between the clients and microservices to e
control data requests. . " ;

« An API gateway authenticates clients before allowing data (@)) N (@
requests. :

+ Most commonly used API technology is REST (Representational

State Transfer). '

APl Consumers Application Services
>B"
* Google Apigee

* Mulesoft ,

+ Amplify (Axway) \

« Software AG Y Gateway

+ Kong (O) Q
» AWS / Azure API services. .

API related products and services

mMiniirange

Cloud Interservice Communications Technologies

gRPC and Interservice Communications

Basics of gRPC When to use gRPC
* Relatively new form of communications. Uses HTTP/2 + Low latency use cases
protocol. + Extensive bidirectional real-time
* An active CNCF project. streaming.
+ Being used by Google, Netflix, and many other « Connect services developed in multiple
organizations for their large cloud-native applications languages.

and systems.
+ Uses binary format. Much faster.
+ Used for internal / backend microservices .
+ Tools support multiple languages.

communications. S for health checki
« Provides security, performance, and scalability. ytaliremote B0 upportfor iealthichecking,

Procedure
gRPC
Stub

Client
(e.g. Browser)

gRPC
Stub

Client

Client + Used for backend communications.
+ Streaming and loT applications

Server

Waiting

API Consumers Appllcatlon Services

Return L

Result * 1)
v

\
: API Gateway
@)
°

miniGsrange

gRPC
Server

Service
(Web Server)

Protocol
Buffers

Cloud Interservice Communications Technologies

Interservice Communications using Message Queues

Basics of Asynchronous Communications When to use Asynchronous Communications

+ Message queues are a form of asynchronous Real-time response is not needed.
communications. Multiple services wait for the same event.

L AMQP is one of the most W|d9|y used messaging . Sending messages to a lot of receivers.
protocols used for this type of communications. o |« Streaming data from multiple senders.

. Implementeq through the use of message brokers such as High Traffic Situations
Kafka, Rabb'th' and others. » Numerous retries are needed

* Implemented using two methods. (1) One-to-one (queue) Communications between numerous entities
implementation. (2) One-to-many (topic) method. : .

« Facilitates decoupled communications. {Fig-TolcTaservices).

Messaging related products and services

Message Queues « Amazon SNS
o Receivers » Amazon MQ
(Senders)
: : + Kafka
X Messages + RabbitMQ
Service A Service B

mMiniCyrange

-

Cloud Interservice Communications Technologies \dentityShielg
+r&
{2,

Service Mesh Enabled Interservice Communications

Basics of Service Mesh

e % ______________ T ________________________________ i
f v v Data Plane
E .
[- > » /

| r 4 ﬂ" rd

|

i

t

Messaging related products and services

+ Linkerd

* Envoy

« AWS App Mesh
* |stio

« Etc.

mMiniGjrange

\dentityshield

Modernizing Legacy Applications for the Cloud

Legacy Migration — 2023 Industry and Market Trends

+('.,{

The Legacy application migration market is discussed in the context of application modernization.

The worldwide market is expected to grow from $20B in
2022 to $50B by 2028.

Most of the application modernization efforts are
concentrated on transitioning to cloud-based applications.

The major driver for app modernization is the inability of
legacy applications to handle new business demands.

© © 6O

The top players in the application modernization market
include IBM, Atos, Cognizant, and Accenture.

The top app modernization projects are focused on legacy
platforms based on COBOL, ADA, PL/1, RPG, and Assembler
languages and technologies.

© O

Source: Valuates Report — See ‘Additional Learning Resources’

mMiniGjrange

DevOps and DevSecOps Practices

DevOps / DevSecOps — 2023 Industry and Market Trends

DevOps — a set of tools and practices that integrate software delivery, deployment, and operations, is meant to increase the efficiency
of the overall SDLC and operations processes supporting applications.

u Instituting of DevSecOps practices Continued focus on improving ‘organizational culture’

CI/CD pipelines are being automated to reap full benefits of

u Integration with other IT processes
DevOps

Instituting GitOps practices to automate Infrastructure

A continuous increase in Dev and Operations Collaboration
deployments

Extending DevOps capabilities to include support of Low
Code Applications

The use of Al in DevOps

Further increase in the use of Infrastructure as Code (laC)
practices

© © ©
© ©O ©¢

Integration with Kubernetes

mMiniGjrange

\dentityshield

DevOps and DevSecOps Practices

CI/CD Pipelines in Cloud-native Applications

[DevOps / DevSecOps

| !

* Code is continuously
integrated
*GitHub

* Artifact Repositories
*Image Registry

* Java archives Production * Multiple targets

« Compute instances

Developers + Cloud Source Repositories * Amazon S3 «Serverless
« Container compute services
+ On-premises and private
Deploy / Release cloud servers
+ Hybrid environments
* Automated build *Dev CQmpute a— “Elc.
and testing Instances Z\
(triggered) +Deploy code to -
* Monitoring results multiple instances -
Monitoring Py p l—
. (an=)
Popular DevOps Practices ~
* Deployable artifacts 4. Infrastructure As Code (laC)
1. Continuous Integration (Cl) > (infrastructure and apps)
Staging
2. Continuous Delivery (CD) (Automated except Deployment) S

3. Continuous Deployment (Fully Automated including Deployment) >

DevOps and DevSecOps Practices dentityShieig
CI/CD Tools and Services a ‘;

| DevOps / DevSecOps | Typical DevOps Functions / Tools
- ! + Maintain source code repositories (e.g.
* Code is continuously _) *Artifact Repositories Git, TFS)
4 integrated 4 .l R o Ruildi ; 2
b — .J:"va::m:s::rv Production | Bu1|d'|ng cc_ude (e.g. Jenkins, Amfactofry)
5 2 « Cloud Source Repositories Rl e * Configuration management (e.g. Chef,
evelopers Puppet)
* Provisioning of infrastructure (e.g. AWS)
Deploy / Release + Testing and automation (e.g. Kobiton,
Bamboo)
* Automated build * Dev Compute - » Version control (e.g. TFS, Plutora)
and testing Instances 7 «Pineli hestrati Digital.ai'
e b e O Alpi;e“me orchestration (e.g. Digital.ai's
* Monitoring results multiple instances gility
Monitoring « Etc.
« AWS CodeCommit + AWS CodeBuild » Google Container Registry + AWS CodeDeploy
* Azure Repos » Google Cloud Build « Azure Container Registry « HashiCorp Terraform,
< Fully managed services (AWS CodePipeline, Azure Pjpelines) >

miniGsrange

Best Practices in Hybrid Cloud Implementation

Hybrid Cloud — 2023 Industry and Market Trends

Hybrid cloud computing combines using the on-premises environment along with the use of public cloud providers and their services. = ¥

82% of organizations have adopted hybrid cloud

92% of organizations have adopted multi-clouds

70% are using hybrid clouds for application development

50% are using hybrid clouds for cloud bursting

OCOOCO O

Cloud-native is accelerating hybrid cloud adoption

Source: Cisco Hybrid Clouds Report / McKinsey Report

OCOOO O

\dentityshield

(4

Hybrid is necessitating the use of AIOPs

Growth of specialized cloud is driving the hybrid trend

Use of Integrated cloud solutions is increasing

Popularity of Hybrid / Multi-Cluster Kubernetes solutions

Use of edge clouds as part of hybrid solutions is increasing

mMiniCrange

Best Practices in Hybrid Cloud Implementation

Hybrid Cloud High-level Architecture

A Hybrid cloud architecture (as the name implies) uses a mix of both on-premises and cloud provider infrastructure.

“Hybrid Cloud market is expected
to reach US $262.4 Billion by 2027,
exhibiting a CAGR of 20.6% during
2021-2027." -- IMARC Group

Private
Cloud

s

On-premises

Public cloud Data Center

_ Cloud-native
° applications

Virtual Network

)
l\?z Networking
Edge clouds
* Setting up Monitoring and Visibility
Hybrid Clouds Availability Zones
Security
SLAs

\dentityshield

+('.,{

MiNi(

range

Industry Cloud Architectural Guidance and Best Practices

Benefits of Applying Cloud Architecture Frameworks and Guidelines

Review architecture guidelines and best practices provided by the major cloud service providers.

Cloud Architecture Projects and Examples

«Migrating legacy applications to the cloud.

| +Building cloud-native applications from scratch. Apply A Well

| »Building data pipelines. Architectural Architected
| *Building ML workloads. Frameworks System

| +Etc.

Benefits of Architectural Frameworks

+Help architects in making various architectural decisions.

«|dentify best architectural practices.

Measure the quality of a system architecture against industry guidelines.

*Provides a set of foundational questions that can be used to measure the
quality of a cloud architecture.

+Ensure that systems measure up in quality and best practices against the
modern cloud-based systems.

« Assess the quality of an overall system and application architecture

«|dentify any high-risk issues and mitigate them.

\dentityshield

*('.&{

Architectural Frameworks
and Guidelines

AWS Well-Architected Framework
and Best Practice Guidance

Microsoft Azure Well-Architected
Framework and Best Practice Guidance

CNCF Recommended Journey to
Cloud-native

mMiniCyrange

Scan for Feedback

Thank You

mMiniGrange

