

CleaScriptTM T7 RNA Polymerase (low dsRNA, 250 U/μL)

Product description

This is an engineered T7 RNA polymerase variant (low dsRNA) derived from the wild-type T7 RNA polymerase and produced in Escherichia coli. It significantly reduces the production of double-stranded RNA (dsRNA) while efficiently incorporating cap analogs, and exhibiting highly efficient in vitro transcription (IVT) comparable to the wild-type T7 RNA polymerase. It catalyzes the $5'\rightarrow 3'$ synthesis of RNA on double-stranded DNA from its T7 promoter sequence (5'-TAATACGACTCACTATAG*-3') and uses NTPs as substrates.

Note: G^* is the first base of the RNA transcript.

Components

Components	Name	10628ES10	10628ES60	10628ES72	10628ES86
No.		(10 KU)	(100 KU)	(2,50KU)	(2,500 KU)
10628	CleaScript™ T7 RNA Polymerase (low dsRNA, 250 U/μL)	40 μL	400 μL	1 mL	10 mL

Specifications

Source	Recombinant <i>E. coli</i> with T7 RNA Polymerase gene		
Optimum Temperature	37°C		
Storage Buffer	50 mM Tris-HCl, 1 mM EDTA, 10 mM DTT, 100 mM NaCl, 0.1% Triton X-100, 50% (v/v) glycerin, pH7.9 at 25°C		
Unit Definition	The amount of enzyme required to incorporate 1 nmol of [³ H] GMP into the acid-insoluble precipitate within 1 hour at 37°C and pH 8.0 is defined as 1 unit.		

Shipping and Storage

The products are shipped with dry ice and can be stored at -15°C \sim -25°C for one year.

Instructions

1. In vitro transcription without cap-analog

1.1 Combine the following reaction components:

Component	Volume (μL)	Final concentration
RNase free H ₂ O	Up to 20	-
10× Transcription Buffer	2	1×
CTP / GTP/ ATP/ UTP (100 mM each)	2 each	10 mM each
CleaScript™ T7 RNA Polymerase (low dsRNA, 250 U/μL)	1	-

YEASEN | CleaScript™ T7 RNA Polymerase (low dsRNA, 250 U/µL)

Pyrophosphatase, Inorganic (1 U/μL)	0.04	
RNase inhibitor (40 U/μL)	0.5	-
DNA template	2 (100 ng-1 μg)	-

Note: 1.1.1 The DNA template should be added last, because the 10×Transcription Buffer contains high concentration of spermidine, which may cause precipitation of DNA templates.

- 1.1.2 It is recommended to keep the buffer and water at room temperature before use. The reaction mix should be prepared at room temperature because spermidine will cause precipitation of high-concentration DNA templates at low temperature.
- 1.1.3 If the transcript is less than 100 nt, the templates should be increased to $2\mu g$.
- 1.1.4 If you need RNase inhibitor (40 U/µL), please purchase our company's product cat#10621.
- 1.1.5 If you need Pyrophosphatase, Inorganic (1 $U/\mu L$), please purchase our company's product cat#10611.
- 1.1.6 In order to ensure effective transcription of a specific region, it is recommended to cut the DNA template downstream region into blunt ends or 5'protruding ends.
- 1.2 Incubate at 37°C for 2-4 h (if the transcript is less than 100 nt, increase the incubating time to 4-8 h).
- 1.3 After the reaction, add 2U DNase I (Cat#10611) and incubate at 37°C for 15-30 min to degrade the DNA template.
- 1.4 Purification of transcripts: RNA Cleaner magnetic beads(Cat#12602) can be used for purification of transcription products via removing proteins, salt ions and other impurities. Phenol/chloroform purification method can also be used (the specific steps can be obtained by contacting Yeasen).

2. In vitro transcription with cap1-analog

2.1 Combine the following reaction components:

Component	Volume (μL)	Final concentration
RNase free H ₂ O	Up to 20	-
10× Transcription Buffer	2	1×
CTP / GTP/ ATP/ UTP (100 mM each)	2 each	10 mM each
Cap1-analog (100 mM)	2	10 mM
CleaScript™ T7 RNA Polymerase (low dsRNA, 250 U/μL)	1	-
Pyrophosphatase, Inorganic (1 U/μL)	0.04	
RNase inhibitor (40 U/μL)	0.5	-
DNA template	2 (100 ng-1 μg)	-

Note: If you need Cap1-analog, please contact our company.

- 2.2 Incubate at 37°C for 2-4 h.
- 2.3 After the reaction, add 2U DNase I (Cat#10611) and incubate at 37°C for 15-30 min to degrade the DNA template.
- 2.4 Purification of transcripts: RNA Cleaner magnetic beads(Cat#12602) can be used for purification of transcription products via removing proteins, salt ions and other impurities. Phenol/chloroform purification method can also be used (the specific steps can be obtained by contacting Yeasen).

Notes

- 1. Types of DNA templates: It is recommended to use linearized plasmids or PCR products containing T7 promoters as templates.
- 2. The purity of the DNA template will significantly affect the yield of in vitro transcription. Residual RNase A during

the plasmid DNA extraction process will significantly affect the quality of transcribed RNA. Plasmid DNA template are recommended to be extracted by phenol-chloroform; PCR products are recommended to be purified by gel.

3. For your safety and health, please wear personal protective equipment (PPE), such as coats and gloves.