Common Mode Filter with ESD Protection

Functional Description

The EMI814x is a family of Common Mode Filters (CMF) with integrated ESD protection, a first in the industry. Differential signaling I/Os can now have both common mode filtering and ESD protection in one package. The EMI814x protects against ESD pulses up to $\pm 15~\rm kV$ contact per the IEC61000–4–2 standard.

The EMI814x is well-suited for protecting systems using high-speed differential ports such as USB 3.0, MIPI D-PHY; corresponding ports in removable storage, and other applications where ESD protection are required in a small footprint package.

The EMI814x is available in a RoHS-compliant, XDFN6 for 1 Differential Pair, XDFN-10 for 2 Differential Pair and XDFN-16 package for 3 Differential Pair.

Features

- Total Insertion Loss DM_{LOSS} < 2.5 dB at 2.5 GHz
- Large Differential Mode Cutoff Frequency f_{3dB} > 5 GHz
- High Common Mode Stop Band Attenuation: > 10 dB at 500 MHz, 15 dB at 700 MHz
- Low Channel Resistance 6.0 Ω
- Provides ESD Protection to IEC61000-4-2 Level 4, ±15 kV Contact
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- USB 3.0
- MHL 2.0
- µSD Card
- eSATA
- HDMI/DVI Display in Mobile Phones
- MIPI D-PHY (CSI-2, DSI, etc) in Mobile Phones and Digital Still Cameras

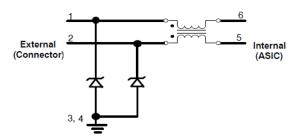


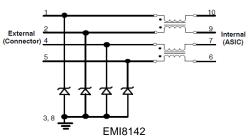
Figure 1. EMI8141 Electrical Schematic

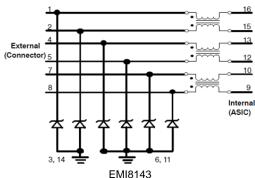
ON Semiconductor®

http://onsemi.com

XDFN6 CASE 711AV XDFN10 CASE 711AU XDFN16 CASE 711AW

MARKING DIAGRAMS




XX = Specific Device Code

M = Date Code

= Pb–Free Package

ELECTRICAL SCHEMATICS

ORDERING INFORMATION

Device	Package	Shipping [†]
EMI8141MUTAC	XDFN6	3000 / Tape & Reel
EMI8142MUTAC	XDFN10	3000 / Tape & Reel
EMI8143MUTAC	XDFN16	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN FUNCTION DESCRIPTION

	Device Pin				
Pin Name	EMI8141	EMI8142	EMI8143	Туре	Description
In_1+	1	1	1	I/O	CMF Channel 1+ to Connector (External)
In_1-	2	2	2	I/O	CMF Channel 1– to Connector (External)
Out_1+	6	10	16	I/O	CMF Channel 1+ to ASIC (Internal)
Out_1-	5	9	15	I/O	CMF Channel 1– to ASIC (Internal)
In_2+	NA	4	4	I/O	CMF Channel 2+ to Connector (External)
In_2-	NA	5	5	I/O	CMF Channel 2– to Connector (External)
Out_2+	NA	7	13	I/O	CMF Channel 2+ to ASIC (Internal)
Out_2-	NA	6	12	I/O	CMF Channel 2– to ASIC (Internal)
In_3+	NA	NA	7	I/O	CMF Channel 3+ to Connector (External)
In_3-	NA	NA	8	I/O	CMF Channel 3– to Connector (External)
Out_3+	NA	NA	10	I/O	CMF Channel 3+ to ASIC (Internal)
Out_3-	NA	NA	9	I/O	CMF Channel 3- to ASIC (Internal)
Vn	3,4	3, 8	3,6,14,11	GND	Ground

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

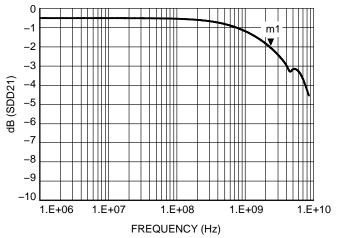
Parameter	Symbol	Value	Unit
Operating Temperature Range	T _{OP}	-40 to +85	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C
Maximum Lead Temperature for Soldering Purposes (1/8" from Case for 10 seconds)	TL	260	°C
DC Current per Line	I _{LINE}	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{RWM}	Reverse Working Voltage	(Note 3)		3.3		V
V _{BR}	Breakdown Voltage	I _T = 1 mA; (Note 4)	4.0		9.0	V
I _{LEAK}	Channel Leakage Current	$T_A = 25^{\circ}C$, $V_{IN} = 3.3 \text{ V, GND} = 0 \text{ V}$			1.0	μΑ
R _{CH}	Channel Resistance (Pins 1–6, 2–5) – EMI8141 (Pins 1–10, 2–9, 4–7 and 5–6) – EMI8142 (Pins 1–16, 2–15, 4–13, 5–12, 7–10 and 8–9) – EMI8143			6.0		Ω
DM _{LOSS}	Differential Mode Insertion Loss	@ 2.5 GHz		2.5		dB
f _{3dB}	Differential Mode Cut-off Frequency	50 Ω Source and Load Termination		5.0		GHz
Fatten	Common Mode Stop Band Attenuation	@ 700 MHz		15		dB
V _{ESD}	In-system ESD Withstand Voltage a) Contact discharge per IEC 61000-4-2 standard, Level 4 (External Pins) b) Contact discharge per IEC 61000-4-2 standard, Level 1 (Internal Pins)	(Notes 1 and 2)	±15 ±2			kV
V _{CL}	TLP Clamping Voltage	Forward $I_{PP} = 8 A$ Forward $I_{PP} = 16 A$ Forward $I_{PP} = -8 A$ Forward $I_{PP} = -16 A$		7.26 11.8 -3.5 -6.7		V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions, thress otherwise noted. Floader performance may not be indicated by the Electrical Characteristics if operated under different conditions.


1. Standard IEC61000–4–2 with C_{Discharge} = 150 pF, R_{Discharge} = 330, GND grounded.

2. These measurements performed with no external capacitor.

3. TVS devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal to or greater than the DC

- or continuous peak operating voltage level.
- 4. V_{BR} is measured at pulse test current I_T .

TYPICAL CHARACTERISTICS

0 -5 -10 -15 dB (SCC21) -20 -25 -30 -35 -40 -45 -50 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 FREQUENCY (Hz)

Figure 2. Typical Differential Mode Attenuation vs. Frequency

Figure 3. Typical Common Mode Attenuation vs. Frequency

Interface	Data Rate (Gb/s)	Fundamental Frequency (GHz)	ESD814x Insertion Loss (dB)
USB 3.0	5	2.5 (m1)	m1 = 2.13

TRANSMISSION LINE PULSE (TLP) MEASUREMENTS

Transmission Line Pulse (TLP) provides current versus voltage (I–V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 4. TLP I–V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10 s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 5 where an 8 kV IEC61000–4–2 current waveform is compared with TLP current pulses at 8 A and 16 A. A TLP curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels. Typical TLP I–V curves for the EMI814x are shown in Figure 4.

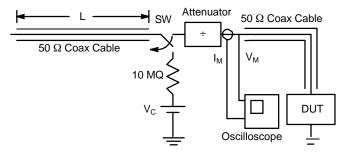


Figure 4. Simplified Schematic of a Typical TLP System

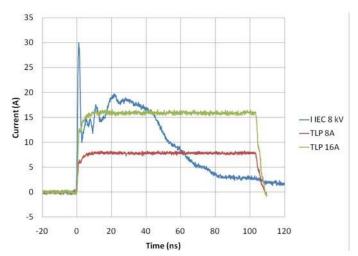
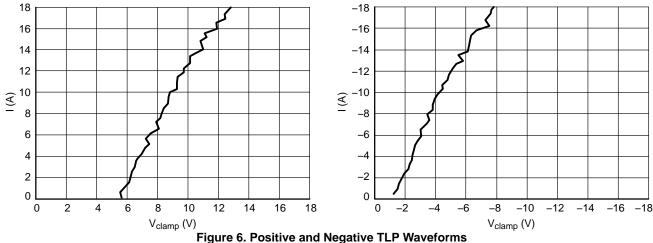



Figure 5. Comparison Between 8 kV IEC61000-4-2 and 8 A and 16 A TLP Waveforms

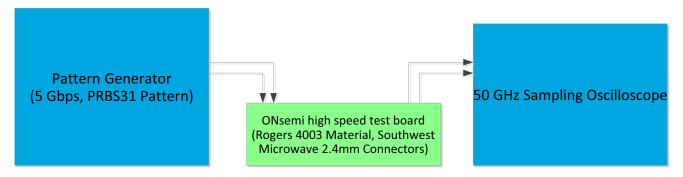


Figure 7. Eye Diagram Test Setup for 5Gbps Data Rate

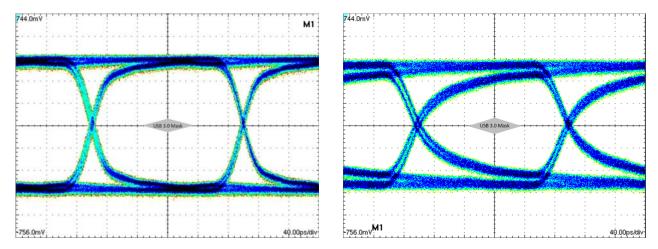
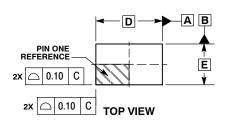
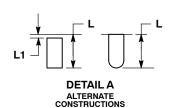
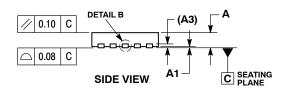
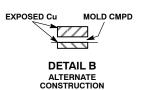


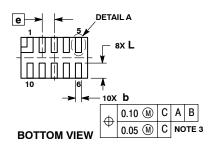
Figure 8. Eye Diagram 5Gbps with and without EMI814x


	Eye Height (mVppd)	Rise Time (ps)	Fall Time (ps)	Jrms (ps)	Jpp (ps)
Reference (No Device)-Left Figure	724	30.4	29.6	1.997	9.6
EMI814x Right Figure	405	60	60.8	3.484	16





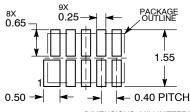

XDFN10 2.2x1.35, 0.4P CASE 711AÚ **ISSUE B**


DATE 17 JUN 2014

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS 5 APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN
 0.15 AND 0.30 MM FROM THE TERMINAL TIP.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.40	0.50	
A1	0.00	0.05	
A3	0.15 REF		
b	0.15	0.25	
D	2.20 BSC		
Е	1.35 BSC		
е	0.40 BSC		
Ĺ	0.40	0.60	
L1		0.15	

GENERIC MARKING DIAGRAM*


XX = Specific Device Code

= Date Code

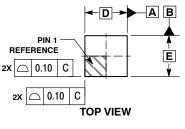
= Pb-Free Package

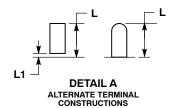
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

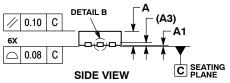
RECOMMENDED MOUNTING FOOTPRINT

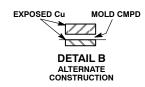
DIMENSIONS: MILLIMETERS

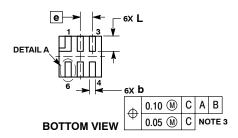
DOCUMENT NUMBER:	98AON83517F	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	XDFN10 2.2X1.35, 0.4P		PAGE 1 OF 1


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.






XDFN6 1.40x1.35, 0.4P CASE 711AV **ISSUE A**

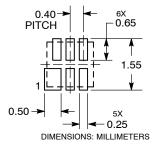

DATE 04 JUN 2014

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSIONS b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.40	0.50		
A1	0.00	0.05		
A3	0.15	REF		
b	0.15 0.2			
D	1.40	BSC		
E	1.35	BSC		
е	0.40 BSC			
L	0.40	0.60		
L1		0 15		

GENERIC MARKING DIAGRAM*

XX = Specific Device Code


= Date Code

= Pb-Free Package

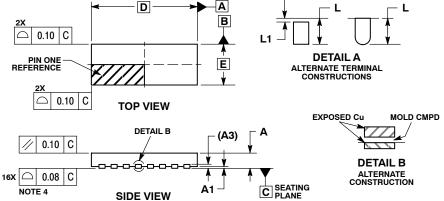
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator. "G" or microdot " ■". may or may not be present.

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98AON83554F	Electronic versions are uncontrolled except when accessed directly from the Document Repr Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	XDFN6 1.40X1.35, 0.4P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



DETAIL A

XDFN16 3.5x1.35, 0.4P CASE 711AW **ISSUE A**

DATE 17 JUN 2014

- 12X L

16X b

Ф

0.10

0.05

CAB

C NOTE 3

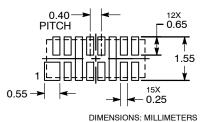
NOTES:

- IES:
 DIMENSIONING AND TOLERANCING PER
 ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION 6 APPLIES TO PLATED TERMINAL
 AND IS MEASURED BETWEEN 0.15 AND
 A 20 DE EDOM THE TERMINAL TIP. 0.30 mm FROM THE TERMINAL TIP.

	MILLIN	IETERS	
DIM	MIN	MAX	
Α	0.40	0.50	
A 1	0.00	0.05	
А3	0.15	REF	
b	0.15	0.25	
D	3.50 BSC		
Е	1.35 BSC		
е	0.40 BSC		
L	0.40	0.60	
L1	-	0.15	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code


= Month Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

RECOMMENDED SOLDERING FOOTPRINT*

BOTTOM VIEW

*For additional information on our Pb-Free strategy and soldering

details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON83555F	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	XDFN16 3.5X1.35, 0.4P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales