

PRODUCT SUMMARY

VDS (V)	-80
RDS(on) max. () at VGS = -10 V	0.510
RDS(on) max. () at VGS = -6 V	0.620
Qg typ. (nC)	7
ID (A) a	-2.2
Configuration	Single

FEATURES

ABSOLUTE MAXIM UM RATINGS (T A = 25 °C, unless otherwise noted)

SYMBOL	PARAMETER		LIMIT	UNIT
VDS	Drain-source voltage		-80	N
VGS	Gate-source voltage		± 20	V
		TC = 25 °C	-2.2	
ID	Continuous durin suuranti (T 150 0C)	TC = 70 °C	-1.75]
ID	Continuous drain currentJ (=T 150 °C)	TA = 25 °C	-1.2 b, c]
		TA = 70 °C	-0.96 b, c]
IDM	Pulsed drain current		-7	A
10	Continuous course durin diada cumant	TC = 25 °C	-2.1]
IS	Continuous source-drain diode current	TA = 25 °C	-0.63 b, c	
IAS	Avalanche current L = 0.1 mH		11]
EAS	Single-pulse avalanche energy	·	6	mJ
		TC = 25 °C	2.5	
	Mayimum nower discinction	TC = 70 °C	1.6	14/
PD	Maximum power dissipation	TA = 25 °C	0.76b, c	W
		TA = 70 °C	0.48b, c	
TJ, Tstg	Operating junction and storage temperature range	-55 to +150	°C	
	Soldering recommendations (peak temperature) d, e	260	1	

THERM AL RESISTANCE RATINGS

SYMBOL	PARAMETER		TYPICAL	MAXIMUM	UNIT
RthJA	Maximum junction-to-ambient b, d	t 10 s	120	166	
RthJF	Maximum junction-to-foot (drain)	Steady state	40	50	°C/W

Notes

a. Package limited

b. Surface mounted on 1" x 1" FR4 board

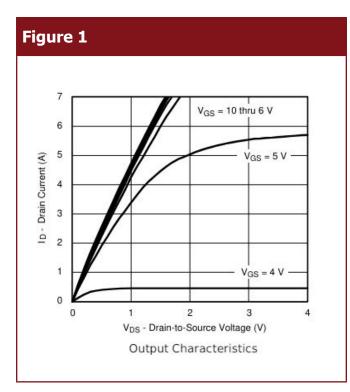
c. t = 10 s

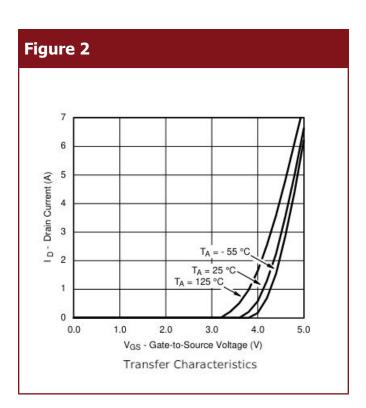
d. Maximum under steady state conditions is 166 °C/W

SPECIFICATIONS (T J = 25 °C, unless otherwise noted)

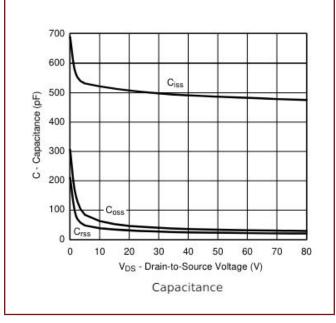
SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT		
Static								
VDS	Drain-source breakdown voltage	VGS = 0 V, ID = -250 µA	-80	-	-	V		
°VDS/TJ	VDS temperature coefficient		-	-35.8	-			
°VGS(th)/TJ	VGS(th) temperature coefficient	ID = -250 μA	-	5.45	-	mV/°C		
VGS(th)	Gate-source threshold voltage	VDS = VGS, ID = -250 µA	-1	-	-3	V		
IGSS	Gate-source leakage	$VDS = 0 V, VGS = \pm 20 V$	-	-	± 100	nA		
		VDS = -80 V, VGS = 0 V	-	-	-1	μA		
IDSS	Zero gate voltage drain current	VDS = -80 V, VGS = 0 V, TJ = 55 °C	-	-	-10	A		
ID(on)	On-state drain current a	VDS = 5 V, VGS = -10 V	-7	-	-			
RDS(on)	Drain-source on-state resistance	VGS = -10 V, ID = -1.2 A	-	0.410	0.510			
KDS(0II)	а	VGS = -6 V, ID = -1.1 A	-	0.520	0.620			
gfs	Forward transconductance a	VDS = -15 V, ID = -1.2 A	-	4.3	-	S		
Dynamic b)							
Ciss	Input capacitance		-	310	-			
Coss	Output capacitance	VDS = -40 V, VGS = 0 V, f = 1 MHz	-	22	-	pF		
Crss	Reverse transfer capacitance	- 1 1112	-	3.1	-			
Qg	Total gate charge	VDS = -40 V, VGS = -10 V, ID = -1.2 A	-	11	16			
			-	1.2	8.0	nC		
Qgs	Gate-source charge	VDS = -40 V, VGS = -6 V, ID = -1.2 A	-	2.1	-			
Qgd	Gate-drain charge	V, 10 - 1.2 A	-	3.2	-			
Rg	Gate resistance	f = 1 MHz	-	4.8	-			

td(on)	Turn-on delay time		-	10	15	
tr	Rise time	VDD = -40 V, RL = 42 ID -0.96 A, VGEN = -10	-	15	23	ns
td(off)	Turn-off delay time	V, Rg = 1	-	20	30	115
tf	Fall time	.,	-	15	23	
td(on)	Turn-on delay time	VDD = -40 V, RL = 42 ID -0.96 A, VGEN = -6 V, Rg = 1	-	15	23	
tr	Rise time		-	18	27	
td(off)	Turn-off delay time		-	20	30	
tf	Fall time		-	12	18	
Drain-Sou	rce Body Diode Characteri	stics				
IS	Continuous source-drain diode current	TC = 25 °C	-	-	-2.1	А
ISM	Pulse diode forward current a		-	-	-7	
VSD	Body diode voltage	IS = 0.63 A	-	-0.8	-1.2	V
trr	Body diode reverse recovery time		-	30	45	ns
Qrr	Body diode reverse recovery charge	IF = 0.63 A, di/dt = 100 A/µs, TJ = 25 °C	-	45	70	nC
ta	Reverse recovery fall time		-	25	-	ns
tb	Reverse recovery rise time		-	5	-	


Notes


a. Pulse test; pulse width 300 $\mu\text{s},$ duty cycle 2 %

b. Guaranteed by design, not subject to production testing


Typical Characteristics

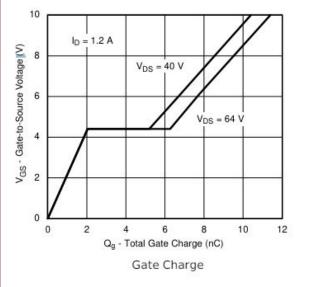

Figure 3 0.30 HDS(on) - Un-Hesistance () 0.25 $V_{GS} = 6 V$ 0.20 V_{GS} = 10 V 0.15 0.10 0 1 2 3 4 5 6 7 ID - Drain Current (A) On-Resistance vs. Drain Current and Gate Voltage

Figure 4

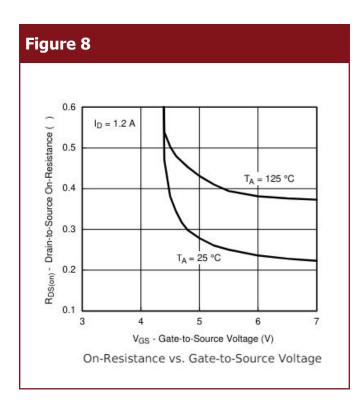


Figure 5

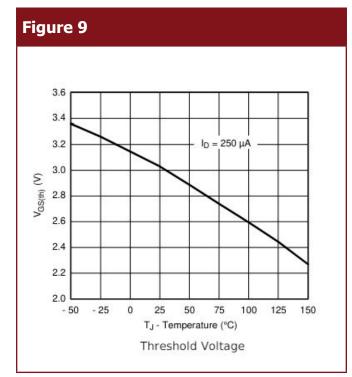
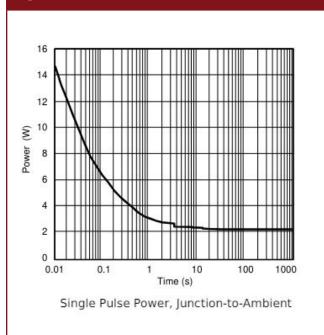
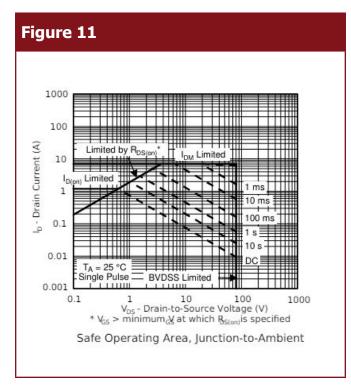


Figure 6 2.0 1.8 1.2 A RDS(on) - On-Resistance (Normalized) $l_D =$ V_{GS} = 10 V 1.6 $V_{GS} = 6 V$ 1.4 1.2 1.0 0.8 0.6 0.4 - 50 - 25 0 25 50 75 100 125 150 T_J - Junction Temperature (°C) On-Resistance vs. Junction Temperature


Figure 7 20 10 T_J = 150 °C Is - Source Current (A) T_J = 25 °C 1 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 V_{SD} - Source-to-Drain Voltage (V) Source-Drain Diode Forward Voltage



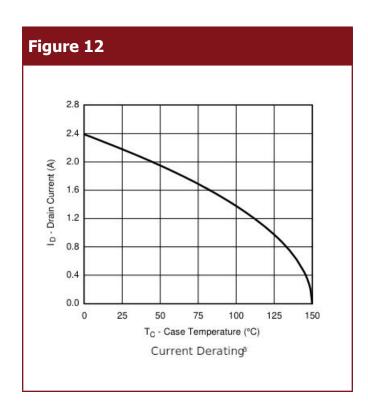
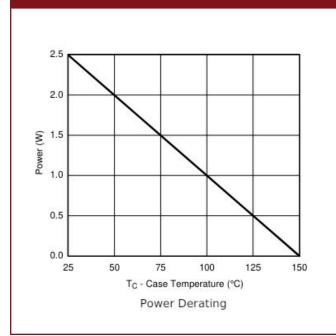
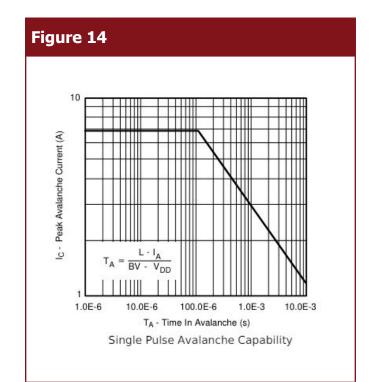
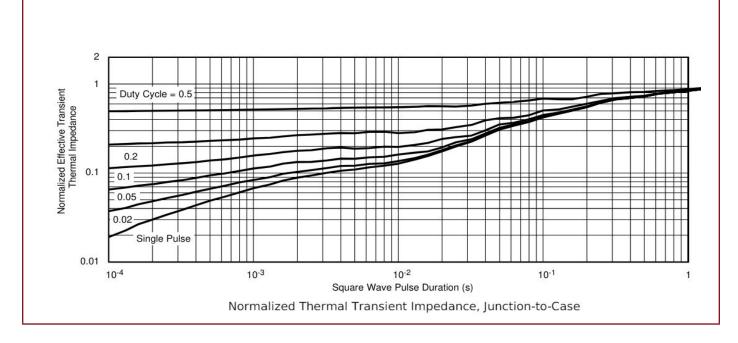


Figure 10









Typical Characteristics

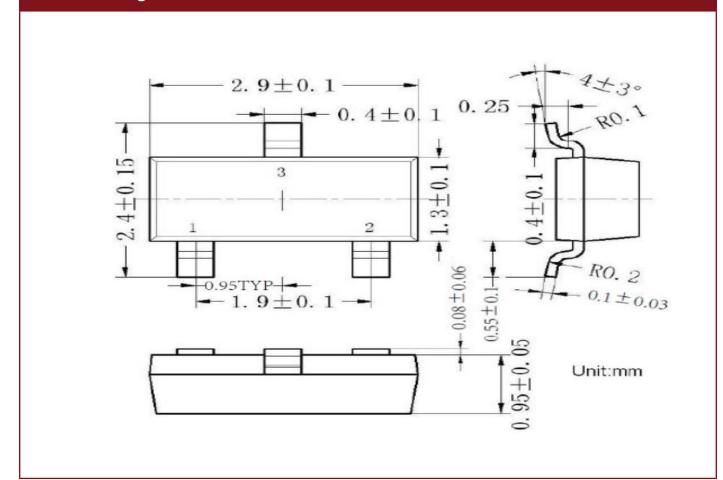
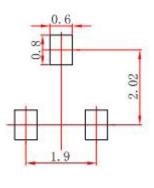


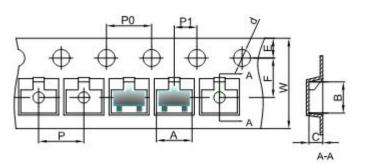
Figure 2



SOT-23 Package Outline Dimensions

SOT-23 Suggested Pad Layout

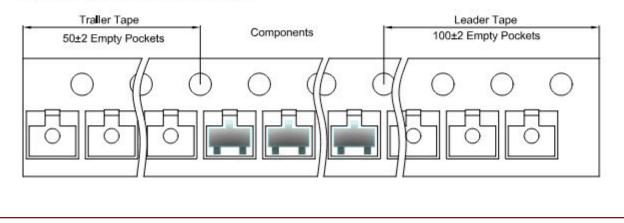
Note:


1.Controlling dimension: in millimeters.

- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

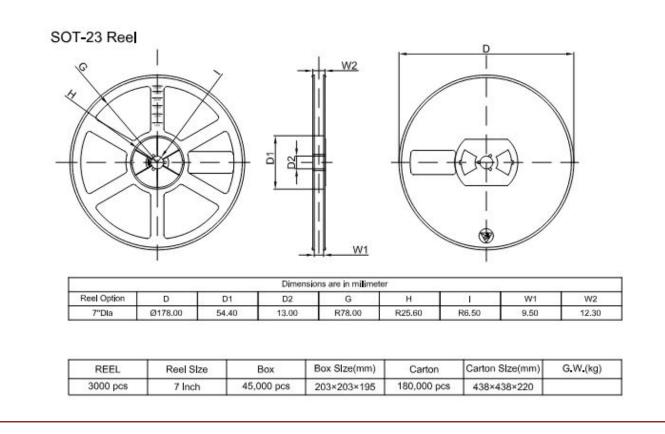
SOT-23 Tape and Reel

SOT-23 Embossed Carrier Tape

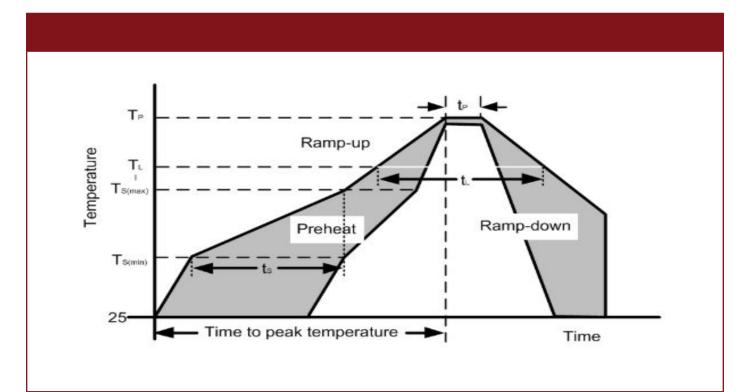


Packaging Description:

SOT-23 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 3,000 units per 7" or 17.8cm diameter reel. The reels are clear in color and is made of polystyrene plastic (anti-static coated).


				Dimensions a	re in millime	ler				
Pkg type	A	В	С	d	E	F	P0	P	P1	W
SOT-23	3.15	2.77	1.22	Ø1.50	1.75	3.50	4.00	4.00	2.00	8.00

SOT-23 Tape Leader and Trailer


SOT-23 Reel

Soldering Parameters

Reflow Condition		Pb – Free assembly
	Temperature Min (Ts(min))	150°C
Pre Heat	Temperature Max (Ts(max))	200°C
	Time (min to max) (ts)	60 – 190 secs
Average ramp up rate (Liqu	idus Temp) (TL) to peak	5°C/second max
		5°C/second max
Deflow	Temperature (TL) (Liquidus)	217°C
Reflow	Temperature (tL)	60 – 150 seconds
		260+0/-5 °C
Time within actual peak Ter	20 – 40 seconds	
Ramp-down Rate	5°C/second max	
Time 25°C to peak Tempera	8 minutes Max.	
Do not exceed	280°C	

