

VRRM	= 650 V
IF (TC=135 °C)	= 8.8 A
QC	= 30 nC

Description

Homogeneous-current SiC Schottky diode with low VF, high repetitive surge current, low leakage, no reverse or forward recovery, and high-temperature operation.

Features

- Temperature-independent fast switching
- Low reverse leakage current
- Low VF at high temperatures
- Easy paralleling (positive temperature coefficient of VF)
- Essentially no switching losses
- Subject to AEC-Q101 qualification
- High repetitive surge current

Typical Applications

- High-frequency power converters
- Industrial motor drives
- Switch-mode power supplies
- Electric vehicles and battery chargers
- Solar inverters
- Power factor correction
- Free-wheeling diode

Part Number	Package	Marking
QSD6HCS65U	TO220	Q

Maximum Rated Values (TC=25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note	
VRRM	Repetitive Peak Reverse Voltage	650	V			
VR	DC Peak Reverse Voltage	650	V			
		21		TC=25°C		
IF	Continuous Forward Current	8.8	А	TC=135°C	Fig. 3	
		7.0		Tc=150°C		
TEDM	Repetitive Peak Forward Surge Cur-	26	Δ	TC=25°C, tP=10 ms, Half Sine Pulse		
IFRM	rent	22	A	TC=110°C, tP=10 ms, Half Sine Pulse		
IFSM	Non-Repetitive Forward Surge Cur- rent	34	A	TC=25°C, tP=10 ms, Half Sine Pulse		
		27		TC=110°C, tP=10 ms, Half Sine Pulse		
TEMAY	Non-Repetitive Forward Surge Cur-	424	A	TC=25°C, tP=10µs, Square Wave Pulse		
IF,™AX	rent	400		TC=110°C, tP=10µs, Square Wave Pulse		
Dtot	Power Dissipation	65	14/	TC=25°C	Fig. 4	
Plot	Power Dissipation	28	vv	TC=110°C	гiy. 4	
נד	Operating Temperature	-55 to +175	°C			
Tstg	Storage Temperature	-55 to +175	°C			
	TO-247 Mounting Torque	1 8.8	Nm Ibf-in	M3 Screw 6-32 Screw		

Electrical Characteristics (TJ=25°C)

Symbol	Parameter	Value Min.	Unit Typ.	Test Conditions Max.	Note			
VF	Forward Voltago		1.4	1.6		V	IF=6A, TJ=25°C	Fig. 1
	Forward voltage		1.5	2.0	v	IF=6A, TJ=175°C	гіў. 1	
IR			0.5	15		VR=650V, TJ=25°C	Fig. 2	
	Reverse Current		6		μA	VR=650V, TJ=175°C		
QC	Total Capacitive Charge		30		nC	VR=650V,TJ=25°C	Fig. 5	
C Total Capacitance			421			VR=0V, TJ=25°C, f=1MHz	Fig. 6	
	Total Capacitance		38		pF	VR=400V, TJ=25°C, f=1MHz		
			37			VR=650V, TJ=25°C, f=1MHz		
EC	Capacitance Stored Energy		5.6		μĴ	VR=650 V	Fig. 7	

Thermal Characteristics

Symbol	Parameter	Value	Unit	Note
ReJC	Thermal Resistance(Junction to Case)	2.3	°C/W	Fig. 8

Typical Performance

Figure 4. Power Derating

Figure 5. Capacitance Charge Vs. Reverse Voltage

Figure 6. Capacitance Vs. Reverse Voltage

Figure 8. Transient Thermal Response Curve(Junction-to-Case)

Package Dimensions

Figure 1

DOC	Inc	hes	Millimeters		
P05	Min	Max	Min	Max	
А	.190	.205	4.70	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1.40	
b2	.065	.094	1.65	2.39	
С	.015	.035	0.38	0.89	
D	.819	.845	20.80	21.46	
D1	.515	-	13.08	-	
D2	.020	.053	0.51	1.35	
E	.620	.640	15.49	16.26	
E1	.530	-	13.46	-	
E2	.135	.157	3.43	3.99	
е	.2	14	5.44		
ØК	.0	10	0.25		
L	.780	.800	19.81	20.32	
L1	-	.177	-	4.50	
ØP	.140	.144	3.56	3.66	
ØP1	.278	.291	7.06	7.39	
Q	.212	.244	5.38	6.20	
S	.243 6.17		17		
W	-	.006	-	0.15	

Recommended Solder Pad Layout

Attention

- Specifications of any and all products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- We assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Silicon products described or contained herein.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc.