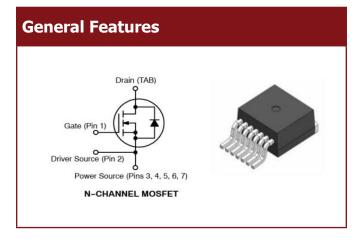
# QS65SCM65D2P Silicon Carbida (SiC)

Silicon Carbide (SiC), MOSFET – SiC, 31mohm, 650V, M2



# www.questsemi.com

# **General Features**


- Fast Switching with Low EMI/RFI
- Simple to Drive and Easy to ParalleI
- Low Gate Charge Minimize Switching Loss
- Short Circuit Withstand Rated
- Improved Efficiency

# **General Features**

| PARAMETER               | VALUE    | UNIT |
|-------------------------|----------|------|
| V <sub>(BR)DSS</sub>    | 650      | V    |
| R <sub>DS(ON)</sub> MAX | 55 @ 20V | mΩ   |
| I <sub>D</sub> MAX      | 65       | A    |
| EON                     | 0.19     | mJ   |
| EOFF                    | 0.10     | mJ   |
| V <sub>GS(TH)</sub>     | 3.0~5.0  | V    |

# **General Features**

- SMPS (Switching Mode Power Supplies)
- Solar Inverters
- UPS (Uninterruptable Power Supplies)
- Energy Storage



| Part Number  | Package  | Marking |
|--------------|----------|---------|
| QS65SCM65D2P | D2PAK-7L | Q       |

#### **MAXIMUM RATINGS**

(TJ = 25°C unless otherwise noted)

| Parameter                  | Symbol           | Value | Unit |
|----------------------------|------------------|-------|------|
| Drain – to-Source Voltage  | V <sub>DSS</sub> | 650   | V    |
| Gate – to – Source Voltage | V <sub>GS</sub>  | -10   | V    |
|                            | - 63             | /+25  | V    |

# QS65SCM65D2P Silicon Carbide (SiC), MOSFET – SiC, 31mohm, 650V, M2



# www.questsemi.com

| Recommended Operation                           | <i>T<sub>C</sub></i> < 175°C      | V <sub>GSOP</sub>          | -5             | V   |   |
|-------------------------------------------------|-----------------------------------|----------------------------|----------------|-----|---|
| Source Voltage                                  |                                   | V GSOP                     | /+20           |     |   |
| Continuous Drain<br>current                     | Steady state                      | $T_C = 25^{\circ}\text{C}$ | I <sub>D</sub> | 65  | A |
| Power Dissipation                               |                                   |                            | $P_D$          | 294 | W |
| Continuous Drain<br>current                     | $T_{C} = 100^{\circ}\mathrm{C}$   | I <sub>D</sub>             | 46             | A   |   |
| Pulsed Drain Current                            | $T_C = 25^{\circ}\text{C}$        | $I_{DM}$                   | 162            | Α   |   |
| Operating Junction and Sto                      | T <sub>J</sub> , T <sub>stg</sub> | -55 <i>TO</i><br>+ 175     | °C             |     |   |
| Source Current                                  | $I_S$                             | 145                        | Α              |     |   |
| Single Pulse Drain to Sourc<br>(From Packaging) | $EA_S$                            | 72                         | mJ             |     |   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, then device functionality should not be assumed, damage may occur and reliability may be affected.

# THERMAL CHARACTERISTICS

| Parameter                        | Symbol         | Max  | Unit |
|----------------------------------|----------------|------|------|
| Junction-to-case – Steady State  | $R_{	heta JC}$ | 0.51 | °C/W |
| Junction-to-Ambient Steady State | $R_{	heta JA}$ | 40   | °C/W |

# **ELECTRICAL CHARACTERISTICS**

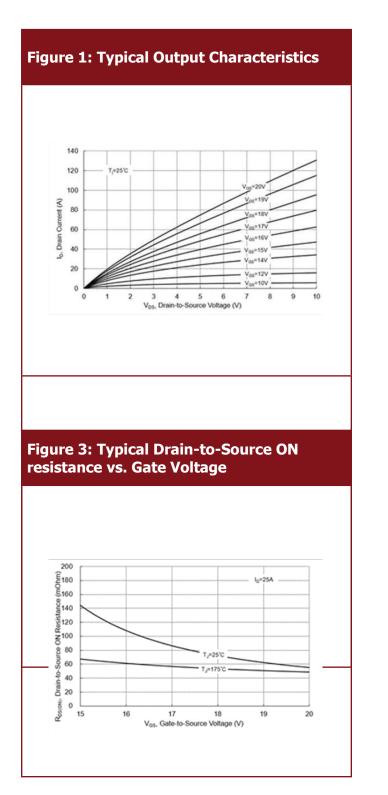
| Parameter                                                           | Symbol                               | Test Condition                       | Min | Тур  | Max  | Unit |
|---------------------------------------------------------------------|--------------------------------------|--------------------------------------|-----|------|------|------|
| OFF CHARACTERISTICS                                                 |                                      |                                      |     |      |      |      |
| Drain – to – Source<br>breakdown voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS} = 0V, I_D = 1mA$             | 650 | _    | -    | V    |
| Drain – to – Source<br>breakdown voltage<br>temperature coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> | $I_D = 20mA  refer  to  25^{\circ}C$ | _   | 0.13 | _    | V∕°C |
| Zero gate voltage drain<br>current                                  | $I_{GSS}$ +                          | $V_{GS} = +20V, V_{DS} = 0V$         | _   | _    | 100  | nA   |
| Gate – to – Source Leakage<br>Current                               | I <sub>GSS</sub> –                   | $V_{GS} = -10V, V_{DS} = 0V$         | _   | _    | -100 | μΑ   |
| ON CHARACTERISTICS                                                  |                                      |                                      |     |      |      |      |
| Gate Threshold Voltage                                              | V <sub>GS(TH)</sub>                  | $V_{GS} = V_{DS}, I_D = 8mA$         | 3.0 | -    | 5.0  | V    |

# **QS65SCM65D2P** Silicon Carbide (SiC), MOSFET – SiC, 31mohm, 650V, M2

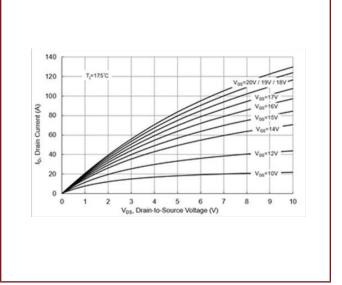


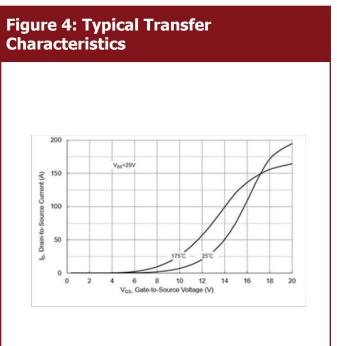


# www.questsemi.com


| Recommended Gate Voltage                | V <sub>GOP</sub>       |                                  | -5 | _    | +18 | V         |
|-----------------------------------------|------------------------|----------------------------------|----|------|-----|-----------|
|                                         |                        | $V_{GS}=20V, I_D=25A,$           | _  | 55   | 70  |           |
| Drain-to-Source On                      |                        | $V_{GS} = 18V, I_D = 25A$        | -  | 71   | —   | 0         |
| Resistance                              | R <sub>DSሺON</sub> ĭ   | $V_{GS} = 20V, I_D = 25A$        |    | 40   |     | $m\Omega$ |
|                                         |                        | $T_J = 175^{\circ}\text{C}$      | _  | 48   | _   |           |
| CHARGES, CAPACITANCES & GATE RESISTANCE |                        |                                  |    |      |     |           |
| Input capacitance                       | C <sub>ISS</sub>       |                                  | -  | 1946 | —   |           |
| Output capacitance                      | C <sub>OSS</sub>       | $V_{GS}=0, V_{DS}=400V,$         | _  | 182  | —   | рF        |
| Reverse transfer capacitance            | C <sub>RSS</sub>       | f = 1MHz                         | -  | 7.6  | _   | P-        |
| Total Gate Charge                       | $Q_{G \wr T O T \lor}$ | $V_{GS} = -5/18, V_{DS} = 520V,$ | -  | 105  | —   |           |
| Gate-to-Source Charge                   | $Q_{GS}$               |                                  | _  | 29   | —   | пС        |
| Gate-to-Drain Charge                    | $Q_{GD}$               | $I_{DS} = 25A$                   | -  | 33   | —   |           |
| Gate-Resistance                         | RG                     | f = 1MHz                         | -  | 8.6  | —   | Ω         |

| SWITCHING CHARAC                                     | TERISTICS              |                                    |   |      |    |    |
|------------------------------------------------------|------------------------|------------------------------------|---|------|----|----|
| Turn-on delay time                                   | $t_{d \wr on arkappa}$ |                                    | - | 21   | -  |    |
| Rise time                                            | tr                     |                                    | - | 17   | —  |    |
| Turn-Off delay time                                  | $t_{d(off)}$           | $V_{GS} = -3.5/18, V_{DS} = 400V,$ | - | 27   | —  | ns |
| Fall time                                            | tf                     | $I_D = 25A, R_G = 2.0\Omega$       | _ | 15   | _  |    |
| Turn-On Switching loss                               | E <sub>ON</sub>        | inductive load                     | _ | 0.19 | —  |    |
| Turn-Off Switching loss                              | E <sub>OFF</sub>       |                                    | _ | 0.10 | —  | μJ |
| Total Switching Loss                                 | $E_{TOT}$              |                                    | _ | 80   | —  |    |
| SOURCE-DRAIN DIODE CHARACTERISTICS                   |                        |                                    |   |      |    |    |
| Continuous Source-<br>Drain Diode Forward<br>Current | I <sub>SD</sub>        | Maximum Ratings                    | _ | _    | 65 | Α  |
| Forward Diode Voltage                                | V <sub>SD</sub>        | $V_{GS} = 0V$ $Is = 25A$           | _ | 4.2  | _  | V  |
| Reverse Recovery Time                                | $t_{RR}$               | $V_{GS} = 0V, I_F = 25A,$          | - | 19   | —  | ns |
| Reverse Recovery<br>Charge                           | $Q_{RR}$               | <u>di</u>                          | _ | 61   | _  | nC |
| Peak Reverse Recovery<br>Current                     | I <sub>mm</sub>        | $= 1000 A/\mu S$ $dt$              | _ | 4.8  | _  | А  |

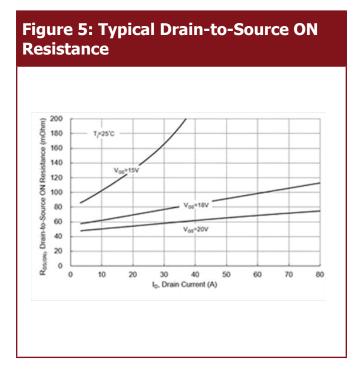

Silicon Carbide (SiC), MOSFET – SiC, 31mohm, 650V, M2



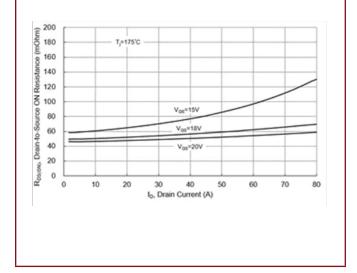

#### www.questsemi.com



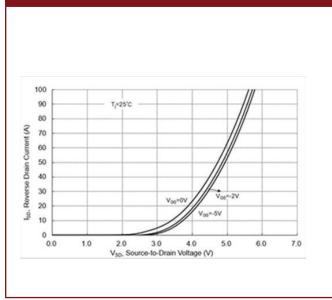
# Figure 2: Typical Output Characteristics



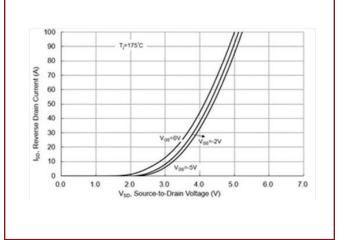




Silicon Carbide (SiC), MOSFET – SiC, 31mohm, 650V, M2




#### www.questsemi.com

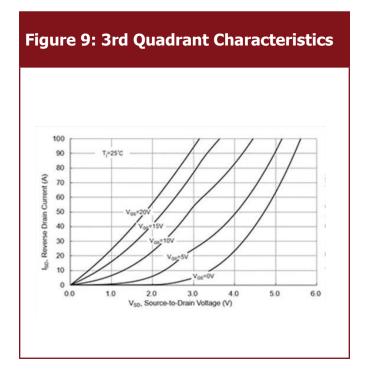


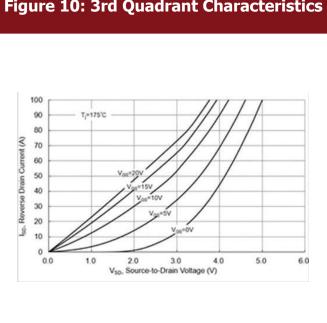

#### Figure 6: Typical Drain-to-Source ON Resistance



# Figure 7: Typical Body Diode Characteristics




# Figure 8: Typical Body Diode Characteristics




Silicon Carbide (SiC), MOSFET - SiC, 31mohm, 650V, M2

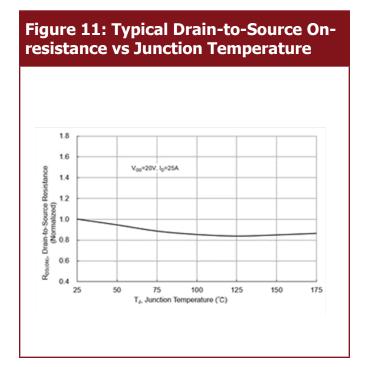
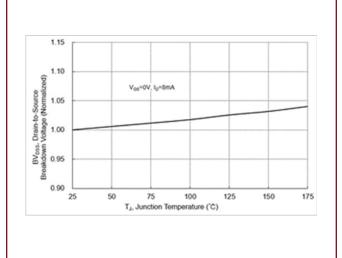


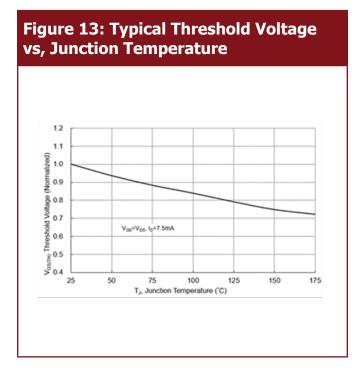
#### www.questsemi.com



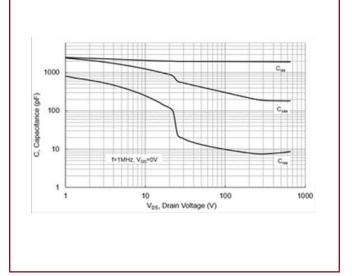


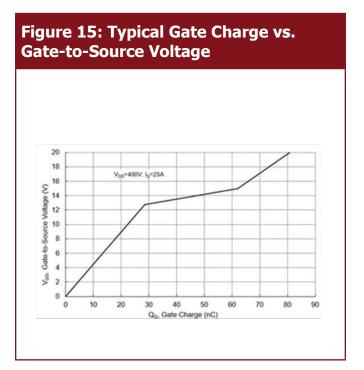
#### Figure 10: 3rd Quadrant Characteristics

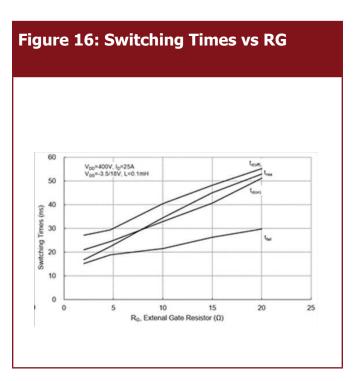





Figure 12: Typical Breakdown Voltage vs. Junction Temperature




Silicon Carbide (SiC), MOSFET – SiC, 31mohm, 650V, M2





www.questsemi.com



# **Figure 14: Typical Capacitance vs. Drain-to-Source Voltage**



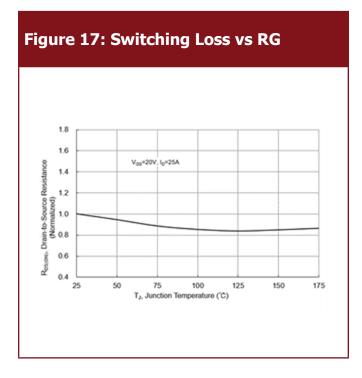
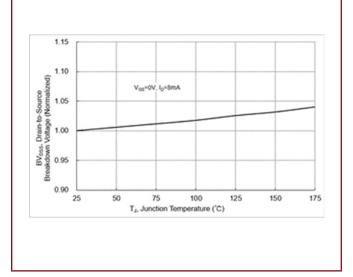
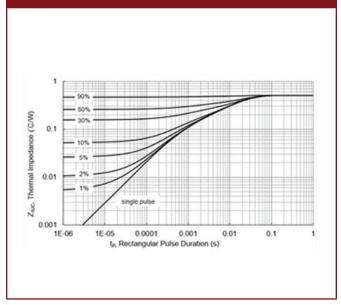


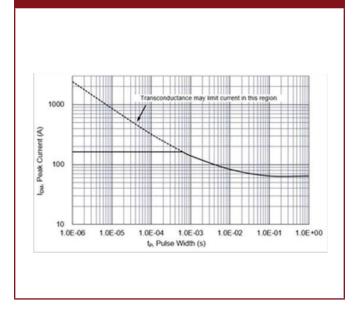


Silicon Carbide (SiC), MOSFET – SiC, 31mohm, 650V, M2



#### www.questsemi.com

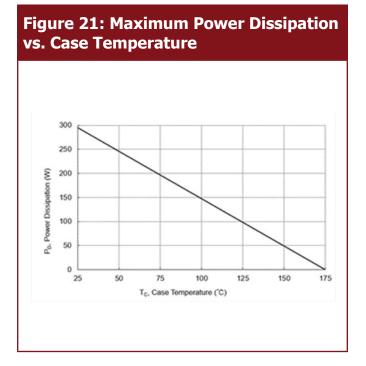






Figure 18: Switching Loss vs. Drain Current



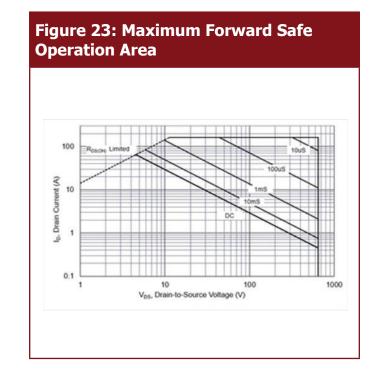
# Figure 19: Thermal Impedance Junction-to-Case




## Figure 20: Maximum Peak Current Capability




Silicon Carbide (SiC), MOSFET – SiC, 31mohm, 650V, M2




#### www.questsemi.com

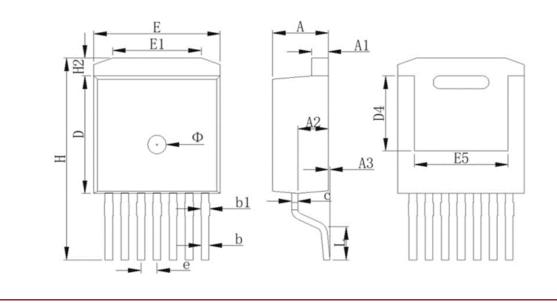


**Figure 22: Maximum Continuous Drain Current vs. Case Temperature** 





**QS65SCM65D2P** Silicon Carbide (SiC), MOSFET – SiC,


31mohm, 650V, M2



# www.questsemi.com

# **Package Dimensions**

## TO-263-7L



| Symbol | MIN(mm) | MAX(mm) |
|--------|---------|---------|
| A      | 4.300   | 4. 560  |
| A1     | 1.200   | 1.400   |
| A2     | 2.450   | 2.750   |
| A3     | 0.000   | 0.250   |
| b      | 0.500   | 0.700   |
| b1     | 0.600   | 0. 900  |
| с      | 0.450   | 0. 600  |
| D      | 8.930   | 9.230   |
| D4     | 4.650   | 4.950   |
| E      | 10.080  | 10.280  |
| E1     | 6. 500  | 7.500   |
| E5     | 6.820   | 7.620   |
| e      | 2.40    |         |
| н      | 15.000  | 16.000  |
| H2     | 0. 980  | 1.420   |
| L      | 1.900   | 2.500   |
| L1     | 6. 480  | 7.080   |
| Θ      | 1.400   | 1.600   |



www.questsemi.com

# **Disclaimer:**

The products described in this datasheet are intended for general-purpose applications, and their specifications and performance characteristics have been established under standard operating conditions. They are not specifically designed or authorized for use in life-critical or life-support systems. Life-critical systems are those in which the failure of a semiconductor device could lead to loss of life, severe injury, or severe damage to property.

It is essential to note that the use of our products in life-critical systems is strictly prohibited without prior written consent and agreement with Quest Semi. Any such usage is at the sole risk of the customer, and Quest Semi disclaims any liability, damages, or loss arising from the use of our products in such applications.

If you are considering the use of our products in life-critical systems, please contact our sales and technical support teams to discuss the necessary measures, risk assessment, and product customization that may be required to ensure compliance with the stringent safety and reliability standards associated with these applications. Customers are strongly advised to conduct their own analysis and testing to confirm the suitability and reliability of our products for their intended application, especially in life-critical systems.

Quest Semi reserves the right to make changes to product specifications and discontinue products without notice. It is the responsibility of the customer to ensure that the latest versions of data-sheets are consulted before finalizing system designs or orders.