

www.questsemi.com

Description

The QS1600T803 triac is suitable for general purpose AC switching. It can be used as an ON/OFF function in applications such as heating regulation, induction motor starting circuits, for phase control operation in light dimmers, motor speed controllers. QS1600T803 snubberless triac is especially recommended for use on inductive loads. Package TO-247S-3L is RoHS compliant.

Main Features

Symbol	Value	Unit
IT(RMS	80	A
VDRM /VRRM	1600	V
IGTI/II/III	50/50/50	mA

Feature / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long term stability

Application:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- Ac power control
- Lighting ad temperature control

www.questsemi.com

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Storage junction temperature range	Tstg	-40-150	°C
Operating junction temperature range	Tj	-40-125	°C
Repetitive peak off-state voltage (Tj=25°C)	VDRM	1600	V
Repetitive peak reverse voltage (Tj=25°C)	VRRM	1600	V
RMS on-state current (TC≤86°C)	IT(RMS)	80	Α
Non repetitive surge peak on-state current	ITSM	800	
(full cycle , tp=20ms , Tj=25°C)			۸
Non repetitive curse peak on state current		000	Α
Non repetitive surge peak on-state current		880	
(full cycle , tp=16.6ms , Tj=25°C)	-2		- 2
I ² t value for fusing (tp=10ms, Tj=25°C)	I²t	3200	A ² s
Critical rate of rise of on-state current	dI/dt	100	A/µs
(IG=2×IGT , f=100Hz , Tj=125°C)			
Peak gate current (tp=20µs, Tj=125°C)	IGM	10	Α
Average gate power dissipation (Tj=125°C)	PG(AV)	0.5	W
Peak gate power	PGM	25	W
Peak pulse voltage (Tj=25°C; non-repetitive, off-state;FIG.7)	Vpp	1	kV

Electrical Characteristics (Tj=25°C unless otherwise specified

Symbol	Test Condition	Quadrant		Value	Unit
Iст		I-II-III	MAX.	50	mΑ
	$V_D = 12V R_L = 33\Omega$				
V_{GT}		I-II-III	MAX.	1.3	V
V_{GD}	$V_D = V_{DRM} T_j = 125$ °C	I-II-III	MIN.	0.2	V
	$R_L = 3.3K\Omega$				
	I _G =1.2I _{GT}	I-III		80	
I_{L}		II	MAX.	120	mA
IH	I _T =1A		MAX.	70	mA
dV/dt	V _D =1070V Gate Open T _j =125°C		MIN.	1500	V/µs
(dI/dt)c	(dV/dt)c=20V/μs T _j =125°C		MIN.	28	A/ms
ton	I _G =80mA I _A =400mA I _R =40mA			12	
toff	T _j =25°C		TYP.	80	μs

This document is the property of Queensland Semiconductor Technologies Ltd and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consent.

www.questsemi.com

Static Characteristics

Symbol	Parameter	Value(MAX.)	Unit	
Vтм	Iтм =120A t _p =380µs	T _j =25°C	1.9	V
V то	Threshold voltage	T _j =125°C	0.71	٧
RD	Dynamic resistance	T _j =125°C	23	mΩ
IDRM	VD=VDRMVR =VRRM	T _j =25°C	20	μΑ
I _{RRM}		T _j =125°C	12	mA

Thermal Resistances

Symbol Parameter		Value	Unit
Rth(j-c)	junction to case (AC)	0.3	°C/W
Rth(j-a) junction to ambient (AC)		45	°C/W

FIG.1 Maximum power dissipation versus RMS on-state current

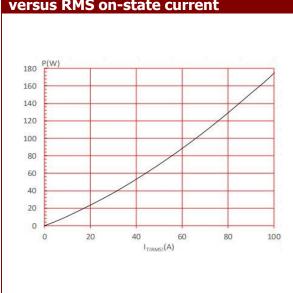


FIG.2: RMS on-state current versus case temperature

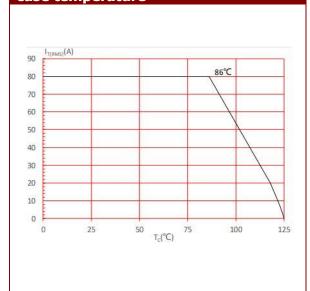


FIG.3: Surge peak on-state current versus number of cycles

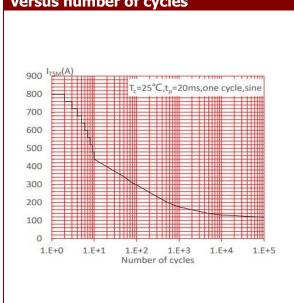


FIG.4: On-state characteristic

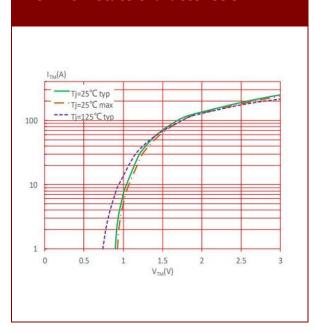


FIG.5: Non-repetitive surge peak onstate current for a sinusoidal pulse with width t_p < 20ms, and corresponding value of l^2t (dl/dt<100A/ μ s)

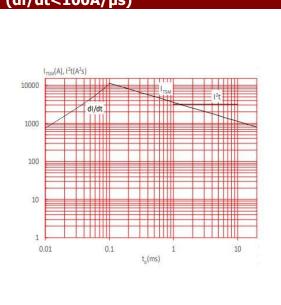
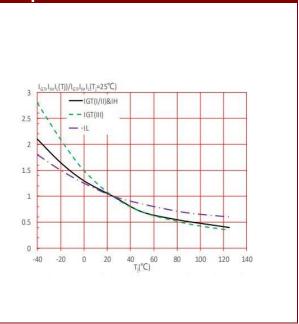
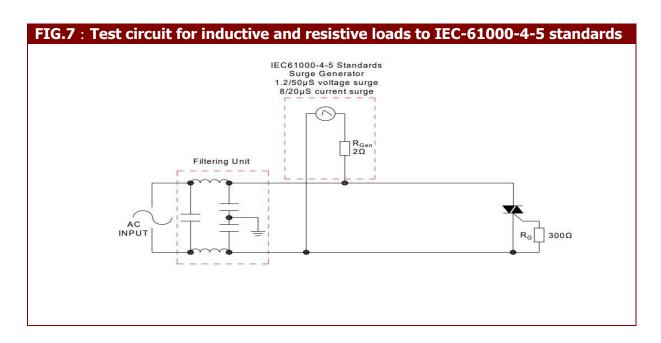
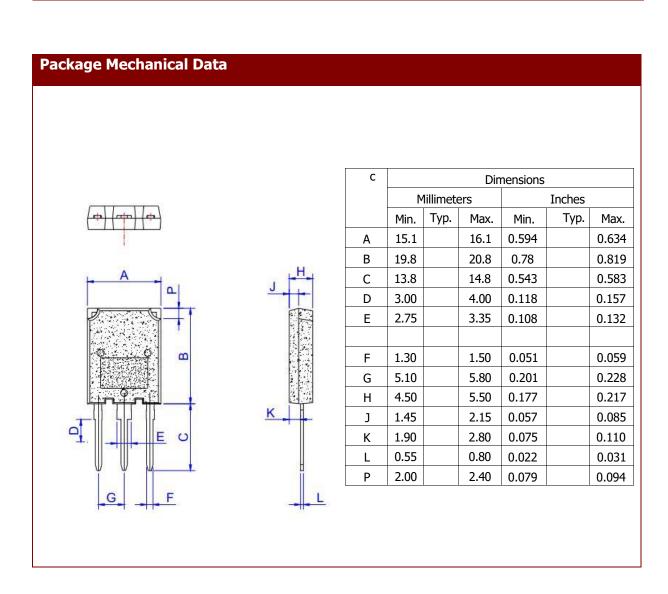
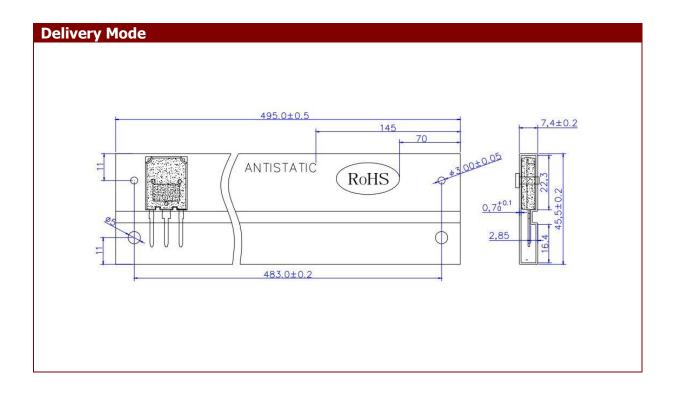




FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature





		IGT(mA)			
Order code	Voltage V _{DRM} /V _{RRM} (V)	I - II - III	Package	Base qty. (pcs)	Delivery mode
QS1600T803	1600	50	TO-247S-3L	30	Tube

Package	Outline	Tube (Pcs)	Inner Box (Pcs)	Per Carton
TO-247S-3L	TUBE	30	450	2,250