

www.questsemi.com

Description

The QS1600T603 triac is suitable for general purpose AC switching. It can be used as an ON/OFF function in applications such as heating regulation, induction motor starting circuits, for phase control operation in light dimmers, motor speed controllers. QS1600T603 snubberless triac is especially recommended for use on inductive loads. Package TO-247S-3L is RoHS compliant.

Main Features

Symbol	Value	Unit	
IT(RMS)	60	А	
VDRM /VRRM	1600	V	
IGTI/II/III	50/50/50	mA	

Feature / Advantages:	Application:
 Thyristor for line frequency Planar passivated chip Long term stability 	 Line rectifying 50/60 Hz Softstart AC motor control DC Motor control Power converter Ac power control Lighting ad temperature control

This document is the property of Queensland Semiconductor Technologies Ltd and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consent. Page **1** of **7**

www.questsemi.com

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Storage junction temperature range	Tstg	-40-150	°C
Operating junction temperature range	Tj	-40-125	°C
Repetitive peak off-state voltage (T _j =25°C)	VDRM	1600	V
Repetitive peak reverse voltage (T_j =25°C)	VRRM	1600	V
RMS on-state current (T _c ≤92°C)	IT(RMS)	60	A
Non repetitive surge peak on-state current (full cycle , $t_p=20ms$, $T_j=25$ °C)	ITSM	600	A
Non repetitive surge peak on-state current (full cycle , $t_p=16.6ms$, $T_i=25$ °C)		660	
$I^{2}t$ value for fusing (t_p=10ms , T_j=25°C)	I²t	1800	A ² s
Critical rate of rise of on-state current ($I_G=2 \times I_{GT}$, f=100Hz, $T_j=125$ °C)	dI/dt	100	A/µs
Peak gate current ($t_p=20\mu s$, $T_j=125$ °C)	IGM	8	A
Average gate power dissipation ($T_j=125$ °C)	PG(AV)	0.5	W
Peak gate power	PGM	10	W
Peak pulse voltage (Tj=25°C; non- repetitive,off-state;FIG.7)	Vpp	Vpp	kV

Electrical Characteristics (Tj=25°C unless otherwise specified

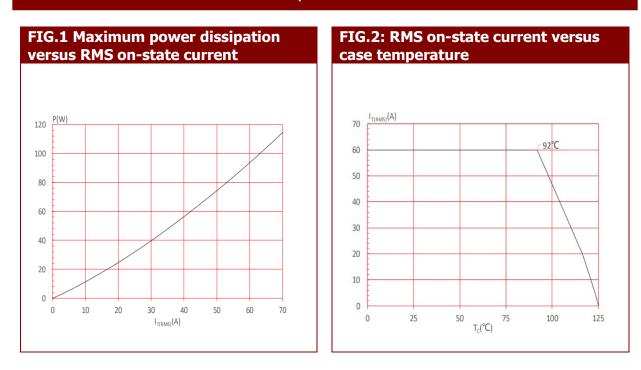
			•		
Symbol	Test Condition	Quadrant		Value	Unit
IGT	$V_D = 12V R_L = 33\Omega$	I-II-III	MAX.	50	mA
VGT		I-II-III	MAX.	1.3	V
VGD	VD =VDRM Tj=125°C R∟=3.3KΩ	I-II-III	MIN.	0.2	V
IL	IG=1.2IGT	I-III II	MAX.	120 120	mA
IH	I _T = 1A		MAX.	80	mA
dV/dt	V _D =1070V Gate Open T _j =125°C	MIN.	1500	V/µs	
(dI/dt)c	(dV/dt)c=20V/µs T _j =125°C	MIN.	28	A/ms	
ton	I_G =80mA I_A =400mA I_R =40mA	TYP.	7	μs	
toff	T _j =25°C			70	

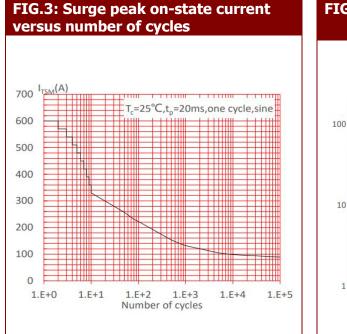
This document is the property of Queensland Semiconductor Technologies Ltd and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consent. Page 2 of 7

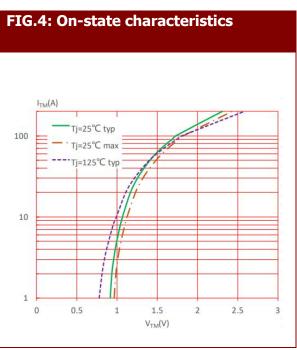
www.questsemi.com

Static Characteristics

Symbol	Parameter	Value(MAX.)	Unit	
VTM	I _{TM} =80A t _p =380µs	T _j =25°C	1.7	V
VTO	Threshold voltage	T _j =125°C	0.75	V
RD	Dynamic resistance	T _j =125°C	24	mΩ
IDRM	VD=VDRMVR	T _j =25°C	15	μA
IRRM	=VRRM	T _j =125°C	10	mA


Thermal Resistances


Symbol	Parameter	Value	Unit
Rth(j-c)	junction to case (AC)	0.35	°C/W
Rth(j-a)	junction to ambient (AC)	45	°C/W


Page **3** of **7**

www.questsemi.com

This document is the property of Queensland Semiconductor Technologies Ltd and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consent. Page **4** of **7**

www.questsemi.com FIG.5: Non-repetitive surge peak onstate current for a sinusoidal pulse with width $t_p < 20$ ms, and corresponding value of l²t temperature $(dl/dt < 100A/\mu s)$ $I_{TSM}(A)$, $I^{2}t(A^{2}s)$ I_{GT} , I_{H} , I_{L} (Tj)/ I_{GT} , I_{H} , I_{L} (Tj=25°C) 3 10000 -IGT(I/II)&IH ↓ l²t - IGT(III) 2.5 tb/Ib

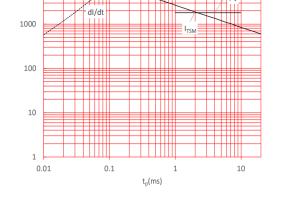
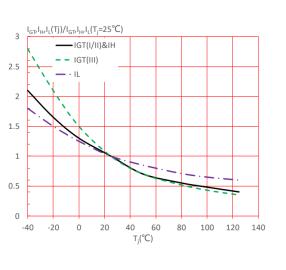
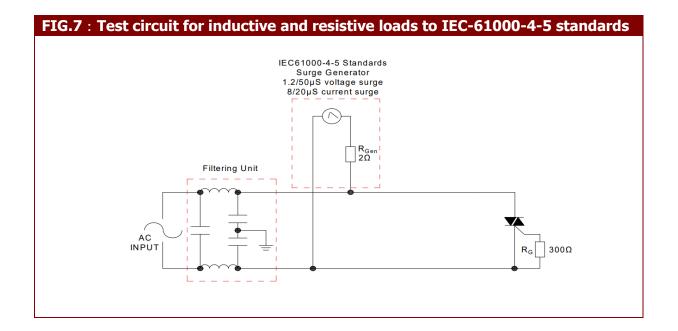
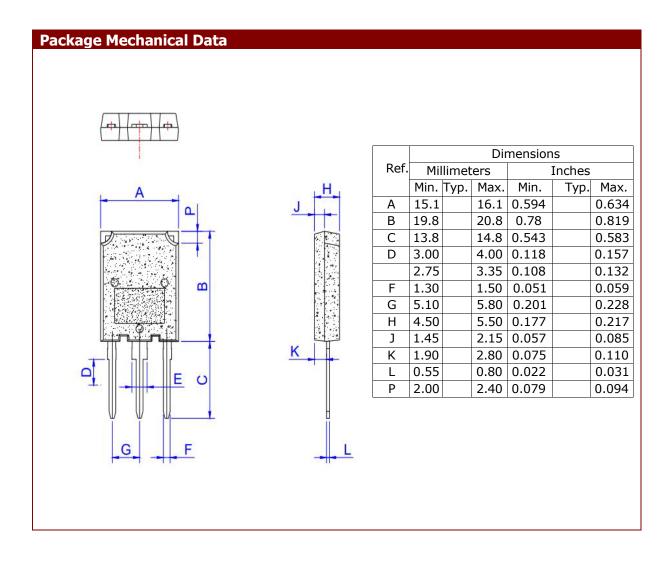
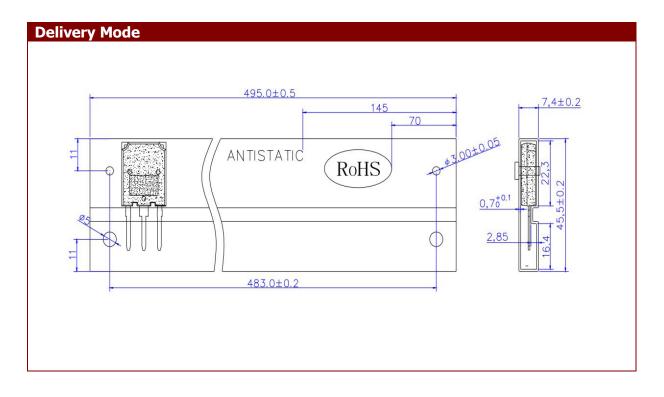




FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction



This document is the property of Queensland Semiconductor Technologies Ltd and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consent.

Page **5** of **7**


www.questsemi.com						
IGT(mA)						
Order code	Voltage V _{DRM} /V _{RRM} (V)	I - II - III	Package	Base qty. (pcs)	Delivery mode	
QS1600T603	1600	50	TO-247S-3L	30	Tube	

This document is the property of Queensland Semiconductor Technologies Ltd and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consent. Page **6** of **7**

www.questsemi.com

Package	Outline	Tube (Pcs)	Inner Box (Pcs)	Per Carton
TO-247S-3L	TUBE	30	450	2,250

This document is the property of Queensland Semiconductor Technologies Ltd Pa and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consent.

Page 7 of 7