



### Introduction

The DSt Sensor Technologies Ltd – Charge resettable JFET SF291 has been approved by the Max Plank Institut fur Kern Physik in Heidelberg for the LEGEND project proving best in class performance for low intrinsic radioactivity, low noise and high sensitivity. LEGEND is one of the biggest Physics projects (Scaled up GERDA) which aims to develop a phased, 76Ge-based discovery of neutrinoless double-beta decay experiment with half-life beyond 1E28 years. An extremely rare event to detect!

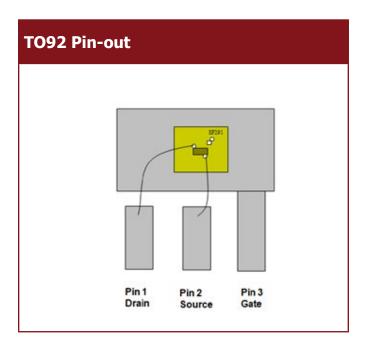
https://www.mpp.mpg.de/en/research/astroparticle-physics-and-cosmology/gerda-andlegend-the-nature-of-the-neutrino/legend-future-of-germanium-detectors/

Neutrinoless double-beta decay is only possible if neutrinos are their own antiparticle. Whether they are or not is not known, even though neutrinos are a fundamental ingredient for nuclear fission, nuclear fusion and the evolution of the universe and, thus, well researched. If they are their own antiparticle, this also contributes to one possible explanation for the disappearance of antimatter.

#### 1.1 DESCRIPTION

The SF291 is a 3 terminal N-channel Low Noise JFET for amplifier applications requiring high transconductance and low noise.

The device can be offered as an unsawn wafer with backside gold, or in a


### **1.2 FEATURES**

- Low Noise.
- High Transconductance
- Low leakage









## 1.0 1.0 ABSOLUTE MAXIMUM RATINGS

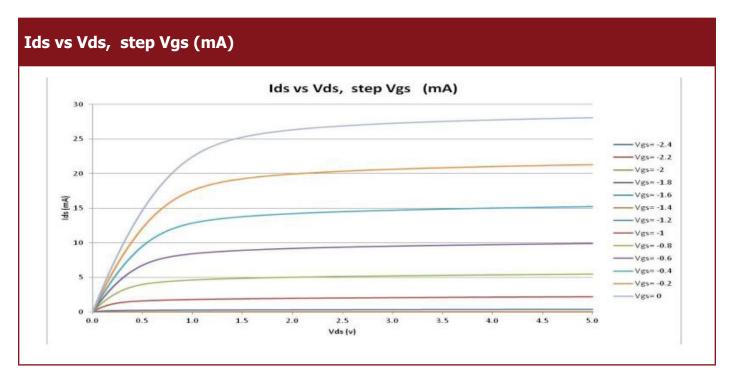
| PARAMETER                 | RATING     | UNITS |
|---------------------------|------------|-------|
| Drain Supply voltage      | 25         | V     |
| Drain Supply current      | 75         | mA    |
| Operating Temperature, TO | 0 to 85    | °C    |
| Storage Temperature, TS   | -40 - +105 | °C    |

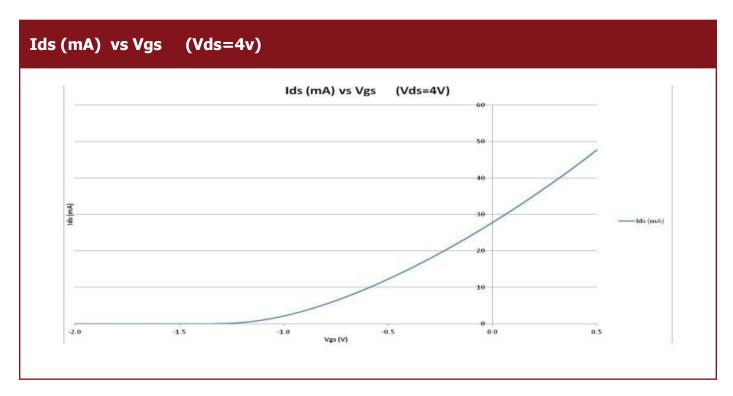
## 2.0 2.0 MECHANICAL SPECIFICATION

| PARAMETER       | RATING                        | UNITS   |  |
|-----------------|-------------------------------|---------|--|
| Chip size LxBxH | 0.9 x 0.9 x 0.3               | mm      |  |
| Gate contact    | On back-side, gold back-metal |         |  |
| Bond pad sizes  |                               | microns |  |






## 3.0 3.0 ELECTRICAL SPECIFICATION


| PARAMETER                                      | SYMBOL  | TEST<br>CONDITIONS  | SPEC         | UNIT |
|------------------------------------------------|---------|---------------------|--------------|------|
| Common-source forward transconductance.        | gfs     | Vgs = 0V, Vds = 3V  | 25 to 45     | mS   |
| Gate-source cut-off voltage                    | Vcutoff | Vds = 3V, Ids = 1uA | -0.8 to -2.5 | V    |
| Drain Current                                  | Idss    | Vds=3V, Vgs=0V      | 10 to 50     | mA   |
| Input capacitance                              | Ciss    | Vds=0V, Vgs=0V      | 8 (typical)  | pF   |
| Gate-Source break-<br>down BVgss Vds= 0, Igs=1 |         | Vds= 0, Igs=1nA     | < -15V       | V    |





## **3.1 ELECTRICAL CURVES**

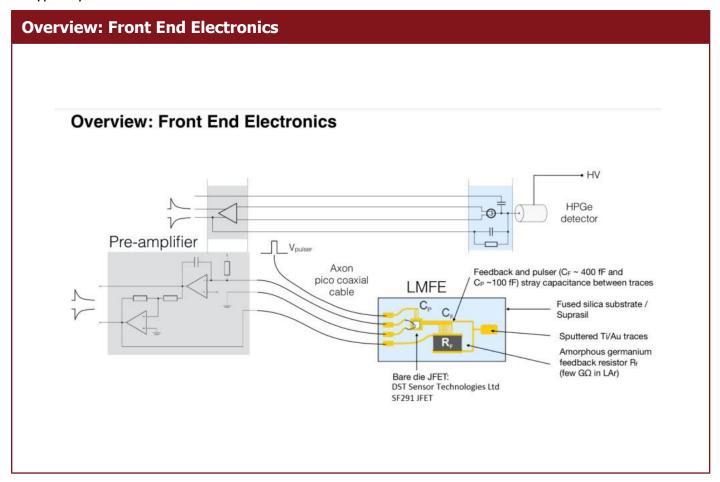








## **4.0 TYPICAL NOISE DATA**


Noise in nVroot(Hz)

| 10Hz | 100Hz | 1kHz | 10kHz | 100kHz | Vgs  |
|------|-------|------|-------|--------|------|
| 1.25 | 0.89  | 0.85 | 0.82  | 0.66   | 1.12 |

Vds = 3V, Ids= 10mA

#### **5.0 APPLICATION NOTE**

As typically used in Nuclear Particle Detection

