

Infrared Tire Temperature Sensor, IRTS-V2 - Datasheet

The Izze-Racing tire temperature sensor is specifically designed to measure the highly transient surface temperature of a tire with spatial fidelity, providing invaluable information for chassis tuning, tire exploitation, compound selection, and driver development.

The sensor is capable of measuring temperature at 16, 8, or 4 laterally-spaced points, at a sampling frequency of up to 100Hz, object temperature between -20 to 300°C, using CAN 2.0A protocol, and enclosed in a compact IP66 rated aluminum enclosure.

SENSOR SPECIFICATIONS

Temperature Measurement Range, T _o	-20 to 300°C				
Package Temperature Range, T _p	-20 to 85°C				
Accuracy (Central 10 Channels, Nominal) (16-Ch Sensor)	± 1.0 °C for 0 °C < T_p < 50 °C ± 2.0 °C for T_p < 0 °C and T_p > 50 °C				
Accuracy (First & Last 3 Channels, Nominal) (16-Ch Sensor)	± 2.0 °C for 0 °C < T _p < 50 °C ± 3.0 °C for T _p < 0 °C and T _p > 50 °C				
Noise Equivalent Temperature Difference, NETD	0.5°C at 16Hz, ε = 0.85, T _o = 25°C				
Field of View, FOV	60° x 8° (wide) 120° x 15° (ultra-wide)				
Number of Channels	16, 8, or 4				
Sampling Frequency	100 ¹ , 64 ¹ , 32, 16, 8, 4, 2, or 1Hz				
Thermal Time Constant	2 ms				
Effective Emissivity	0.01 to 1.00 (default = 0.78)				
Spectral Range	8 to 14 μm				

^{1 -} Optional Extra, 64Hz limit for IRTS-120-V2, 100Hz limit for IRTS-60-V2

ELECTRICAL SPECIFICATIONS

Supply Voltage, V _s	5 to 8 V
Supply Current, I₅ (typ)	30 mA
Features	 Reverse polarity protection
	 Over-temperature protection (125°C)

MECHANICAL SPECIFICATIONS

Weight	20 g
L x W x H (max, 60° FOV)	36.6 x 26.0 x 12.3 mm
L x W x H (max, 120° FOV)	31 x 29.0 x 12.3 mm
Protection Rating	IP66

Infrared Tire Temperature Sensor, IRTS-V2 - Datasheet

CAN SPECIFICATIONS

CAN 2.0A (11-bit identifier), ISO-11898
1 Mbit/s
Big-Endian / Motorola
0.1°C per bit, -100°C offset, unsigned
LF Sensor: 1200 (Dec) / 0x4B0 (Hex)
RF Sensor: 1204 (Dec) / 0x4B4 (Hex)
LR Sensor: 1208 (Dec) / 0x4B8 (Hex)
RR Sensor: 1212 (Dec) / 0x4BC (Hex)
None

CAN ID: Base ID

Channel 1		Channel 2		Channel 3		Channel 4	
Byte 0 (MSI	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+1

Channel 5		Channel 6		Channel 7		Channel 8	
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+2

Channel 9		Channel 10		Channel 11		Channel 12	
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+3

Channel 13		Channel 14		Channel 15		Channel 16		
Е	Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

WIRING SPECIFICATIONS:

Wire 26 AWG M22759/32, DR25 jacket (EPD49715A available upon request)
Cable Length (typ.) 500 mm

Cable Length (typ.) 500 mi Connector None

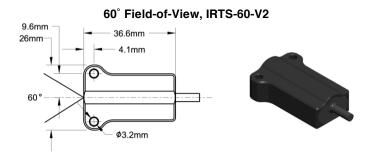
Supply Voltage, Vs Red Black (twisted)
CAN + Blue (twisted)
CAN - White

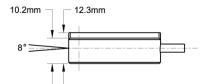
Infrared Tire Temperature Sensor, IRTS-V2 - Datasheet

SENSOR CONFIGURATION:

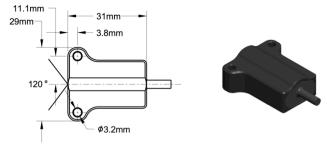
To modify the sensor's configuration, send the following CAN message at 1Hz for at least 10 seconds and then reset the sensor by disconnecting power for 5 seconds:

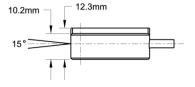
CAN ID: Current Base ID

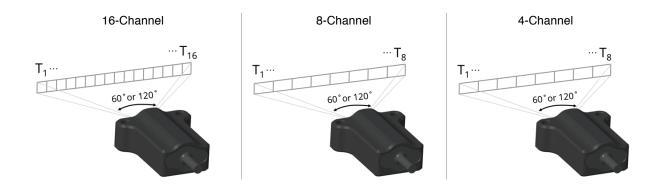

G. 11.12.1 Gal. 1 G. 12.2 G. 12										
Programming Constant		New CAN Base ID (11-bit)		Emissivity	Sampling Frequency		Channels			
	Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)		Byte 4	Byte 5		Byte 6	Byte 7	Byte 7
	30000 = 0x7530		1 = 0x001 : 2047 = 0x7FF			1 = 1Hz 2 = 2Hz 3 = 4Hz 4 = 8Hz	5 = 16Hz 6 = 32Hz 7 = 64Hz ¹ 8 = 100Hz ¹	40 = 4Ch 80 = 8Ch 160 = 16Ch		

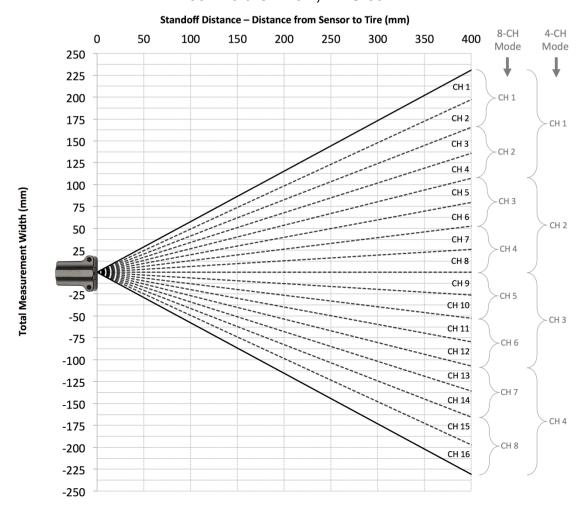

^{1 -} Optional Extra, 64Hz limit for IRTS-120-V2, 100Hz limit for IRTS-60-V2

CAN messages should only be sent to the sensor during the configuration sequence.

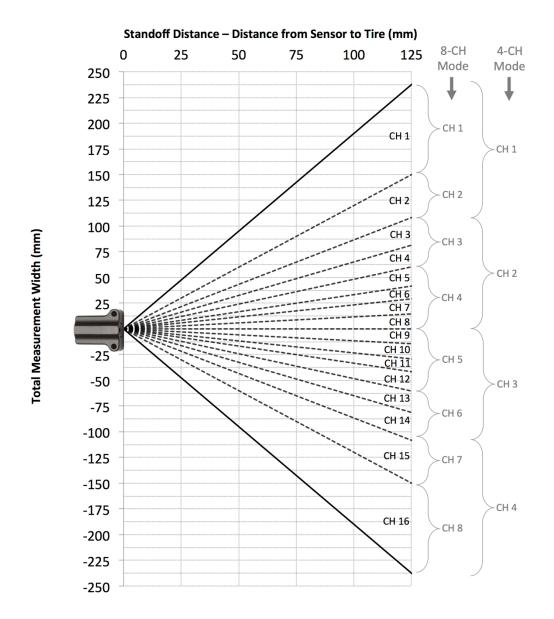

DO NOT continuously send CAN messages to the sensor.


DIMENSIONS:


120° Field-of-View, IRTS-120-V2

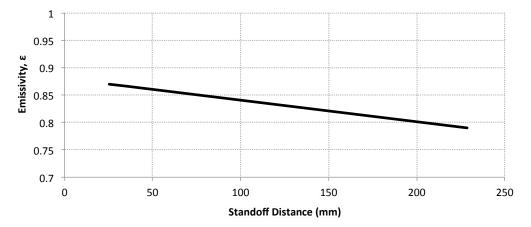


Field of View (FOV):

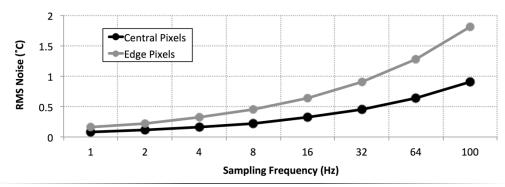

60° Field-of-View, IRTS-60-V2:

(Approximate. Angle offset (z-axis rotation) between -5° and +5°, mounts should allow adjustment accordingly)

120° Field-of-View, IRTS-120-V2:



(Approximate. Angle offset (z-axis rotation) between -5° and +5°, mounts should allow adjustment accordingly)



ADDITIONAL INFORMATION:

- Stated accuracy is under isothermal package conditions; for utmost accuracy, avoid abrupt temperature transients and gradients across the sensor's package.
- Point the sensor in the downstream direction (facing front of tire) to avoid contamination, pitting, and/or destruction of the sensor's lens from debris. Protective windows are available upon request.
- The effective emissivity of most tires ranges from approximately 0.75 to 0.90 in the 8 to 14 μm spectrum.
 - Generally, the emissivity should be lowered as the standoff distance (distance from tire to sensor) increases; this is particularly important with the 60° FOV sensor due to the larger standoff distances required. The suggested emissivity vs. standoff distance is shown in the graph below:

- o Lowering the emissivity increases the measured object temperature and vice versa
- Noise Equivalent Temperature Difference (NETD) increases with increasing sampling frequency:
 - Provided that tire surface temperature is highly transient, it is usually advantageous to use a higher sampling frequency at the cost of increased noise. A sampling frequency of 16 or 32 Hz is recommended for most applications.

