

A5s Plus

Receiving Card

V1.1.1

Buy website address: https://reissopto-led.com/products/novastar-a5s-plus-n-mini-receiving-card

Specifications

Change History

Document Version	Release Date	Description
V1.1.1	2021-02-06	Updated the appearance diagrams. Updated the packing information.
V1.1.0	2020-11-18	Updated the product appearance diagram.
V1.0.1	2020-09-30	Added the LVDS transmission feature. Added the distance between outer surfaces of the A5s Plus and HUB boards after their high-density connectors fit together.
V1.0.0	2020-08-18	First release

Introduction

The A5s Plus is a general small receiving card developed by NovaStar. A single A5s Plus loads up to 512×384 pixels (NovaLCT V5.3.1 or later required). Supporting color management, 18Bit+, pixel level brightness and chroma calibration, individual Gamma adjustment for RGB, and 3D functions, the A5s Plus can greatly improve the display effect and user experience.

The A5s Plus uses high-density connectors for communication to limit the effects of dust and vibration, resulting in high stability. It supports up to 32 groups of parallel RGB data or 64 groups of serial data (expandable to 128 groups of serial data). Its reserved pins allow for custom functions of users. Thanks to its EMC Class B compliant hardware design, the A5s Plus has improved electromagnetic compatibility and is suitable to various on-site setups.

Features

Improvements to Display Effect

- Color management
 Switch the color gamut of the screen between multiple gamuts to enable more precise colors on the screen.
- 18Bit+ Improve the LED display grayscale by 4 times to avoid grayscale loss due to low brightness and allow for a smoother image.
- Pixel level brightness and chroma calibration
 Working with NovaLCT and NovaCLB, the
 receiving card supports brightness and chroma
 calibration on each LED, which can effectively
 remove color discrepancies and greatly improve
 LED display brightness and chroma consistency,
 allowing for better image quality.
- Quick adjustment of dark or bright lines
 The dark or bright lines caused by splicing of
 cabinets or modules can be adjusted to improve
 the visual experience. This function is easy to
 use and the adjustment takes effect immediately.
 In NovaLCT V5.2.0 or later, the adjustment can
 be performed without using or changing the
 video source.
- Low latency
 The latency of video source on the receiving card end can be reduced to 1 frame (only when using modules with driver IC with built-in RAM).
- 3D function
 Working with the independent controller which supports 3D function, the receiving card supports 3D image output.
- Individual Gamma adjustment for RGB

Working with NovaLCT (V5.2.0 or later) and the independent controller which supports this function, the receiving card supports individual adjustment of red Gamma, green Gamma and blue Gamma, which can effectively control image non-uniformity under low grayscale and white balance offset, allowing for a more realistic image.

Image rotation in 90° increments
 The display image can be set to rotate in multiples of 90° (0°/90°/180°/270°).

Improvements to Maintainability

- Smart module (dedicated firmware required)
 Working with the smart module, the receiving
 card supports module ID management, storage
 of calibration coefficients and module
 parameters, monitoring of module temperature,
 voltage and flat cable communication status,
 LED error detection, and recording of the
 module run time.
- Automatic module calibration
 After a new module with flash memory is installed to replace the old one, the calibration coefficients stored in the flash memory can be automatically uploaded to the receiving card when it is powered on.
- Quick uploading of calibration coefficients
 The calibration coefficients can be quickly uploaded to the receiving card, improving efficiency greatly.
- Module Flash management
 For modules with flash memory, the information stored in the memory can be managed. The calibration coefficients and module ID can be stored and read back.
- One click to apply calibration coefficients stored in module Flash
 For modules with flash memory, if the Ethernet cable is disconnected, users can hold down the self-test button on the cabinet to upload the calibration coefficients in the flash memory of the module to the receiving card.
- Mapping function
 The cabinets display the receiving card number and Ethernet port information, allowing users to easily obtain the locations and connection topology of receiving cards.
- Setting of a pre-stored image in receiving card
 The image displayed on the screen during
 startup, or displayed when the Ethernet cable is
 disconnected or there is no video signal can be
 customized.
- Temperature and voltage monitoring
 The temperature and voltage of the receiving
 card can be monitored without using peripherals.

Cabinet LCD

The LCD module connected to the cabinet can display the temperature, voltage, single run time and total run time of the receiving card.

Bit error detection

The Ethernet port communication quality of the receiving card can be monitored and the number of erroneous packets can be recorded to help troubleshoot network communication problems.

NovaLCT V5.2.0 or later is required.

- Status detection of dual power supplies
 When two power supplies are connected, their working status can be detected by the receiving card.
- Firmware program readback
 The firmware program of the receiving card can be read back and saved to the local computer.

NovaLCT V5.2.0 or later is required.

- Configuration parameter readback
 The configuration parameters of the receiving card can be read back and saved to the local computer.
- LVDS transmission (dedicated firmware required)
 Low-voltage differential signaling (LVDS)
 transmission is used to reduce the number of
 data cables from the hub board to module,
 increase the transmission distance, and improve
 the signal transmission quality and
 electromagnetic compatibility (EMC).

Improvements to Reliability

Dual card backup and status monitoring
In an application with requirements for high
reliability, two receiving cards can be mounted
onto a single hub board for backup. In the case
that the main receiving card fails, the backup
card will serve to ensure uninterrupted operation
of the display.

The working status of the main and backup receiving cards can be monitored in NovaLCT V5.2.0 or later.

Loop backup

The receiving cards and the sending card form a loop via the main and backup line connections. If a fault occurs at a location of the lines, the screen can still display the image normally.

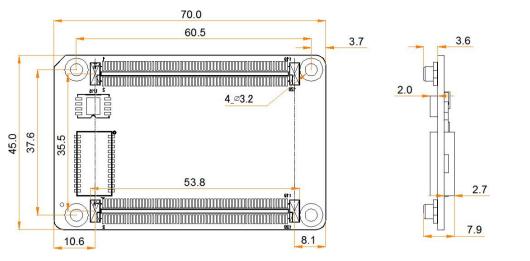
- Dual backup of configuration parameters
 The receiving card configuration parameters are
 stored in the application area and factory area of
 the receiving card at the same time. Users
 usually use the configuration parameters in the
 application area. If necessary, users can restore
 the configuration parameters in the factory area
 to the application area.
- Dual backup of the application program

Two copies of the application program are stored in the receiving card at the factory to avoid the

problem that the receiving card may get stuck due to program update exception.

Appearance

All product pictures shown in this document are for illustration purpose only. Actual product may vary.


Indicators

Indicator Indicator

Indicator	Color	Status	Description	
Running indicator			The receiving card is functioning normally. Ethernet cable connection is normal, and video source input is available.	
		Flashing once every 3s	Ethernet cable connection is abnormal.	
41 PM		Flashing 3 times every 0.5s	Ethernet cable connection is normal, but no video source input is available.	
		Flashing once every 0.2s	The receiving card failed to load the program in the application area and now is using the backup program.	
		Flashing 8 times every 0.5s	A redundancy switchover occurred on the Ethernet port and the loop backup has taken effect.	
Power indicator	Red	Always on	The power input is normal.	

Dimensions

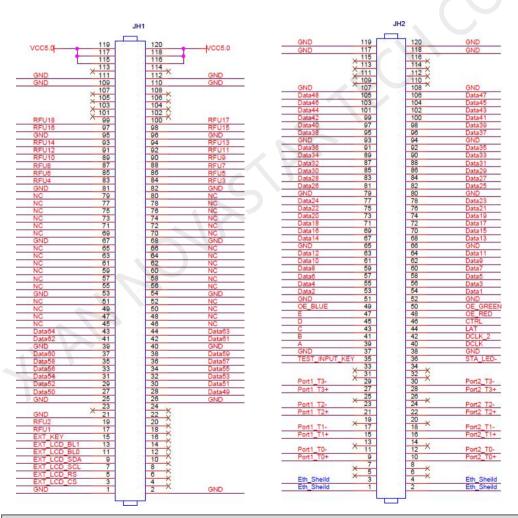
The board thickness is not greater than 2.0 mm, and the total thickness (board thickness + thickness of components on the top and bottom sides) is not greater than 8.0 mm. Ground connection (GND) is enabled for mounting holes.


Tolerance: ±0.1 Unit: mm

The distance between outer surfaces of the A5s Plus and HUB boards after their high-density connectors fit together is 5.0 mm. An 5-mm copper pillar is recommended.

Pins

Pins for 32 Groups of Parallel Data


		JH1			
	GND	1	2	GND	
LCD CS signal	EXT LCD CS	3	4	NC NC	
LCD RS signal	EXT_LCD_GG	5	6	NC NC	
LCD clock signal	EXT_LCD_NO	7	8	NC NC	
LCD data signal	EXT_LCD_SDA	9	10	NC NC	
LCD backlight signal 1	EXT_LCD_SDA	11	12	NC NC	
LCD backlight signal 2	EXT_LCD_BL0	13	14	NC NC	
LCD backlight signal 2	EXT_LCD_BL1	15	16	NC NC	
/ LCD control button	RFU1	17	18	NC NC	
1				NC NC	
1	RFU2	19	20		
	GND	21	22	NC NC	
	NC	23	24	NC	
,	GND	25	26	GND	
/	G17	27	28	R17	
1	R18	29	30	B17	
1	B18	31	32	G18	1
1	G19	33	34	R19	1
1	R20	35	36	B19	1
1	B20	37	38	G20	1
	GND	39	40	GND	
1	G21	41	42	R21	1
1	R22	43	44	B21	1
1	B22	45	46	G22	1
1	G23	47	48	R23	1
1	R24	49	50	B23	1
1	B24	51	52	G24	1
	GND	53	54	GND	
1	G25	55	56	R25	1
1	R26	57	58	B25	1
1	B26	59	60	G26	1
1	G27	61	62	R27	1
1	R28	63	64	B27	1
1	B28	65	66	G28	/
	GND	67	68	GND	,
1	G29	69	70	R29	1
1	R30	71	72	B29	/
1	B30	73	74	G30	1
1	G31	75	76	R31	1
	R32	77	78	B31	1
1	B32	79	80	G32	1
7	GND			GND	/
1	GND RFU4	81	82	RFU3	ı
1		83	84		1
1	RFU6	85	86	RFU5	/
1	RFU8	87	88	RFU7	1
1	RFU10	89	90	RFU9	1
1	RFU12	91	92	RFU11	1
/	RFU14	93	94	RFU13	1
	GND	95	96	GND	
1	RFU16	97	98	RFU15	1
1	RFU18	99	100	RFU17	1
	NC	101	102	NC	
	NC	103	104	NC	
	NC	105	106	NC	

JH1							
	NC	107	108	NC			
	GND	109	110	GND			
	GND	111	112	GND			
	NC	113	114	NC			
	VCC	115	116	VCC			
	VCC	117	118	VCC			
	VCC	119	120	VCC			

Chassis			JH2		
Chassis ground	Eth Sheild	1	2	Eth Sheild	Chassis ground
Chassis ground	Eth Sheild	3	4	Eth Sheild	Chassis ground
J	NC	5	6	NC	9
	NC	7	8	NC	
	Port1 T0+	9	10	Port2 T0+	/() •
	 Port1_T0-	11	12	Port2_T0-	
	NC	13	14	NC	
	Port1 T1+	15	16	Port2_T1+	
	Port1_T1-	17	18	Port2_T1-	
Gigabit Ethernet port	NC	19	20	NC	Gigabit Ethernet port
·	Port1_T2+	21	22	Port2_T2+	
	Port1_T2-	23	24	Port2_T2-	
	NC	25	26	NC	
	Port1_T3+	27	28	Port2_T3+	
	Port1_T3-	29	30	Port2_T3-	
	NC	31	32	NC	
	NC	33	34	NC	
Test button	TEST_INPUT_KEY	35	36	STA_LED-	Running indicator
	GND	37	38	GND	(active low)
Line decoding signal	A	39	40	DCLK	Shift clock output 1
Line decoding signal	В	41	42	DCLK_2	Shift clock output 2
Line decoding signal	C	43	44	LAT	Latch signal output
Line decoding signal	D	45	46	CTRL	Afterglow control signal
Line decoding signal	E	47	48	OE RED	Display enable
Display enable	OE BLUE	49	50	OE_GREEN	Display enable
Biopidy chasic	GND	51	52	GND	Biopidy chabic
1	G1	53	54	R1	1
,	R2	55	56	B1	1
	B2	57	58	G2	,
1	G3	59	60	R3	1
1	R4	61	62	B3	1
1	B4	63	64	G4	
,	GND	65	66	GND	•
1	G5	67	68	R5	
,	R6	69	70	B5	1
,	B6	71	72	G6	1
1	G7	73	74	R7	1
1	R8	75	76	B7	1
	B8	77	78	G8	1
	GND	79	80	GND	· · · · · · · · · · · · · · · · · · ·
1	G9	81	82	R9	1
1	R10	83	84	B9	1
1	B10	85	86	G10	1

	JH2							
1	G11	87	88	R11	1			
1	R12	89	90	B11	1			
1	B12	91	92	G12	1			
	GND	93	94	GND				
1	G13	95	96	R13	/			
1	R14	97	98	B13	/			
1	B14	99	100	G14	1			
1	G15	101	102	R15	/			
1	R16	103	104	B15	/			
1	B16	105	106	G16	/			
	GND	107	108	GND				
	NC	109	110	NC				
	NC	111	112	NC				
	NC	113	114	NC				
_	NC	115	116	NC				
	GND	117	118	GND				
	GND	119	120	GND				

Pins for 64 Groups of Serial Data

JH1						
	GND	1	2	GND		
LCD CS signal	EXT_LCD_CS	3	4	NC		
LCD RS signal	EXT_LCD_RS	5	6	NC		
LCD clock signal	EXT_LCD_SCL	7	8	NC		
LCD data signal	EXT_LCD_SDA	9	10	NC		

		JH1			
LCD backlight signal 1	EXT LCD BL0	11	12	NC	
LCD backlight signal 2	EXT LCD BL1	13	14	NC	
LCD control button	EXT KEY	15	16	NC	
/	RFU1	17	18	NC	
1	RFU2	19	20	NC	
,	GND	21	22	NC	
	NC	23	24	NC	
	GND	25	26	GND	
1	Data50	27	28	Data49	1
1	Data52	29	30	Data51	/
1	Data54	31	32	Data53	/
1	Data56	33	34	Data55	/
1	Data58	35	36	Data57	/
1	Data60	37	38	Data59	
	GND	39	40	GND	
1	Data62	41	42	Data61	1
1	Data64	43	44	Data63	ì
,	NC NC	45	46	NC	
	NC NC	47	48	NC	
	NC NC	49	50	NC NC	
	NC NC	51	52	NC NC	
		53	54	GND	
	GND				
	NC NC	55	56	NC NC	
	NC NC	57	58	NC NC	
	NC NC	59	60	NC NC	
	NC NC	61	62	NC NC	
	NC NC	63	64	NC NC	
	NC NC	65	66	NC	
	GND	67	68	GND	
	NC	69	70	NC	
	NC	71	72	NC	
	NC	73	74	NC	
	NC	75	76	NC	
	NC	77	78	NC	
	NC	79	80	NC	
	GND	81	82	GND	
1	RFU4	83	84	RFU3	/
	RFU6	85	86	RFU5	1
	RFU8	87	88	RFU7	1
1	RFU10	89	90	RFU9	1
1	RFU12	91	92	RFU11	/
/	RFU14	93	94	RFU13	/
	GND	95	96	GND	
1	RFU16	97	98	RFU15	1
1	RFU18	99	100	RFU17	1
	NC	101	102	NC	
	NC	103	104	NC	
	NC	105	106	NC	
	NC	107	108	NC	
	GND	109	110	GND	
	GND	111	112	GND	
	NC	113	114	NC	
	VCC	115	116	VCC	

JH1							
	VCC	117	118	VCC			
	VCC	119	120	VCC			

			JH2		
Chassis ground	Eth_Sheild	1	2	Eth_Sheild	Chassis ground
Chassis ground	Eth_Sheild	3	4	Eth_Sheild	Chassis ground
-	NC	5	6	NC	
	NC	7	8	NC	
	Port1_T0+	9	10	Port2_T0+	
	Port1_T0-	11	12	Port2_T0-	
	NC	13	14	NC	
	Port1_T1+	15	16	Port2_T1+	
	Port1_T1-	17	18	Port2_T1-	
Gigabit Ethernet port	NC	19	20	NC	Gigabit Ethernet port
	Port1_T2+	21	22	Port2_T2+	
	Port1_T2-	23	24	Port2_T2-	
	NC	25	26	NC	
	Port1 T3+	27	28	Port2 T3+	1.1
	Port1 T3-	29	30	Port2 T3-	
	NC	31	32	NC	
	NC	33	34	NC	
Test button	TEST_INPUT_KEY	35	36	STA_LED-	Running indicator (active low)
	GND	37	38	GND	
Line decoding signal	А	39	40	DCLK	Shift clock output 1
Line decoding signal	В	41	42	DCLK_2	Shift clock output 2
Line decoding signal	С	43	44	LAT	Latch signal output
Line decoding signal	D	45	46	CTRL	Afterglow control signal
Line decoding signal	Е	47	48	OE_RED	Display enable
Display enable	OE_BLUE	49	50	OE_GREEN	Display enable
	GND	51	52	GND	
1	Data2	53	54	Data1	1
1	Data4	55	56	Data3	1
1	Data6	57	58	Data5	1
1	Data8	59	60	Data7	1
1	Data10	61	62	Data9	1
1	Data12	63	64	Data11	1
	GND	65	66	GND	
1	Data14	67	68	Data13	1
1	Data16	69	70	Data15	1
1	Data18	71	72	Data17	1
1	Data20	73	74	Data19	1
1	Data22	75	76	Data21	1
1	Data24	77	78	Data23	1
	GND	79	80	GND	
1	Data26	81	82	Data25	1
1	Data28	83	84	Data27	1
1	Data30	85	86	Data29	1
1	Data32	87	88	Data31	1
1	Data34	89	90	Data33	1
1	Data36	91	92	Data35	1
	GND	93	94	GND	
1	Data38	95	96	Data37	1

	JH2							
1	Data40	97	98	Data39	1			
1	Data42	99	100	Data41	1			
1	Data44	101	102	Data43	1			
1	Data46	103	104	Data45	1			
1	Data48	105	106	Data47	1			
	GND	107	108	GND				
	NC	109	110	NC				
	NC	111	112	NC				
	NC	113	114	NC				
	NC	115	116	NC				
	GND	117	118	GND				
	GND	119	120	GND				

The recommended VCC power input is 5.0 V.

OE_RED, OE_GREEN and OE_BLUE are display enable pins. When RGB are not controlled separately, use OE_RED. When the PWM chip is used, those pins are used as GCLK pins.

In the mode of 128 groups of serial data, Data65-Data128 use the data of Data1-Data64, respectively.

Reference Design for Extended Functions

Pins for Extended Functions						
Pin	Recommended Module Flash Pin	Recommended Smart Module Pin	Description			
RFU4	HUB_SPI_CLK	Reserved	Clock signal of serial pin			
RFU6	HUB_SPI_CS	Reserved	CS signal of serial pin			
RFU8	HUB_SPI_MOSI		Module Flash data storage input			
KFU6	1	HUB_UART_TX	Smart module TX signal			
RFU10	HUB_SPI_MISO	1	Module Flash data storage output			
RFUIU	1	HUB_UART_RX	Smart module RX signal			
RFU3	HUB_	CODE0				
RFU5	HUB_	CODE1				
RFU7	HUB_	CODE2	Module Flash BUS control pin			
RFU9	HUB_	CODE3				
RFU18	HUB_	CODE4				
RFU11	HUB_H	164_CSD	74LIC4C4 data signal			
RFU13	HUB_H	1164_CLK	74HC164 data signal			
RFU14	POWE	R_STA1	Dual name annulu data atian aigual			
RFU16	POWE	:R_STA2	Dual power supply detection signal			
RFU15	MS_	DATA	Dual card backup connection signal			
RFU17	MS	S_ID	Dual card backup identifier signal			

The RFU8 and RFU10 are signal multiplex extension pins. Only one pin from either the Recommended Smart Module Pin or the Recommended Module Flash Pin can be selected at the same time.

Specifications

Maximum Loading Capacity	512 × 384 pixels	
Electrical	Input voltage	DC 3.3 V to 5.5 V

Б (
Parameters	Rated current	0.6 A
	Rated power consumption	3.0 W
Operating Environment	Temperature	-20°C to +70°C
	Humidity	10% RH to 90% RH, non-condensing
Storage Environment	Temperature	-25°C to +125°C
	Humidity	0% RH to 95% RH, non-condensing
Physical Specifications	Dimensions	70.0 mm × 45.0 mm × 7.9 mm
	Net weight	16.2 g Note: It is the weight of a single receiving card only.
	Gross weight	1.2 kg Note: It is the total weight of the products, printed materials and packing materials packed according to the packing specifications.
Packing Information	Packing specifications	Each receiving card is packaged in a blister pack. Each packing box contains 80 receiving cards.
	Packing box dimensions	378.0 mm × 190.0 mm × 120.0 mm
Certifications	RoHS, EMC Class B	

The amount of current and power consumption may vary depending on many factors such as product settings, usage, and environment.

Copyright © 2021 Xi'an NovaStar Tech Co., Ltd. All Rights Reserved.

No part of this document may be copied, reproduced, extracted or transmitted in any form or by any means without the prior written consent of Xi'an NovaStar Tech Co., Ltd.

Trademark

NOVA 5TAR is a trademark of Xi'an NovaStar Tech Co., Ltd.

Statement

Thank you for choosing NovaStar's product. This document is intended to help you understand and use the product. For accuracy and reliability, NovaStar may make improvements and/or changes to this document at any time and without notice. If you experience any problems in use or have any suggestions, please contact us via the contact information given in this document. We will do our best to solve any issues, as well as evaluate and implement any suggestions.