

3892 Del Amo Boulevard •Torrance, California 90503 (310) 214-0043 • Fax(310) 370-3642 Web Site: www.bioscreen.com • E-Mail: info@bioscreen.com

FDA IN-VITRO BROAD SPECTRUM TEST

FINAL REPORT

February 25, 2016

SPONSOR:

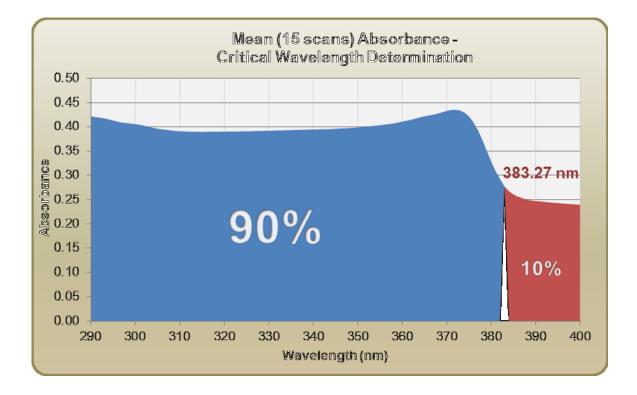
Poofy Organics 6 Franklin Place Rutherford, NJ 07070

TEST PRODUCT: Sunscreen

PROJECT – ACCESSION NUMBER: 938341 – 938341

RESEARCH STANDARD

This clinical study was conducted in accordance with the International Conference of Harmonization Tripartite Guidelines on Good Clinical Practice, applicable FDA regulations/guidelines set forth in 21 CFR Parts 11, and 50 and standard practices of BioScreen Testing Services.


TABLE OF CONTENTS

	Page
I. STUDY CONCLUSION AND RESULTS	4
II. STUDY OBJECTIVE	5
III. TEST PRODUCT	5
IV. UV SOURCE (SOLAR SIMULATOR) EMISSION SPECTRUM	5
V. PLATE (SUBSTRATE)	6
VI. PROCEDURE	6
VII. CALCULATIONS	7

I. STUDY CONCLUSION AND RESULTS

The Critical Wavelength of the <u>Sunscreen</u> is 383.27 nm, and <u>does satisfy</u> the required minimum of 370 nm for "Broad Spectrum" labeling.

Critical Wavelength Values After Pre-Irradiation Procedure					
UV Source Irradiance Output:			5.0 MED/h		
Irradiation Time (Single Plate):			2880 sec		
	Location 1	Location 2	Location 3	Location 4	Location 5
Plate 1	383	383	383	383	384
Plate 2	383	383	383	383	383
Plate 3	383	384	383	384	384
Average	383.27 nm				
Requirement	minimum $\lambda_c = 370 \text{ nm}$				

II. STUDY OBJECTIVE

The study objective was to evaluate the critical wavelength of the test product according to the broad spectrum testing method published in *21 CFR 201.327(j)*.

The Solar Light Xenon Arc Fade Test UV Simulator – Model 16S-300-003 V4.0 or LS1000-6S-UV was used as UV source of pre-irradiation.

III. TEST PRODUCT

Accession No. 938341 was assigned to <u>Test Product: Sunscreen</u> which was received from Poofy Organics on February 23, 2016.

IV. UV SOURCE (SOLAR SIMULATOR) EMISSION SPECTRUM

Solar simulator was filtered so that it provided a continuous emission spectrum from 290 to 400 nanometers (nm) with a limit of 1,500 watts per square meter (W/m^2) on total solar simulator irradiance for all wavelengths between 250 and 1400 nm and the following percentage of erythema-effective radiation in each specified range of wavelengths:

Wavelength range (nm)	Erythemal Contribution (%)
<290	<0.1
290 - 300	1.0 - 8.0
290 - 310	49.0-65.0
290 - 320	85.0-90.0
290 - 330	91.5 - 95.5
290 - 340	94.0-97.0
290 - 400	99.9 - 100.0

UVA II (320-340 nm) irradiance was \geq 20% of the total UV (290-400 nm) irradiance.

UVA I (340-400 nm) irradiance was \geq 60% of the total UV irradiance.

The emission spectrum of the solar simulator was determined using a radiometer with a response weighted to match the spectrum in *ISO 17166 CIE S 007/E entitled "Erythemal reference action spectrum and standard erythema dose,"* which was incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51.

V. PLATE (SUBSTRATE)

PMMA Plates Sa	6 µm	Surface topography measurement (Sa)	
T WINTA T TAKES SA		Requirement: 2 to 7 µm	
Application Area	$5 \operatorname{cm} x 5 \operatorname{cm} = 25 \operatorname{cm}^2$	Area requirement: min 16cm ²	
Manufacturer	HeliosScreen Laboratoire		
Designation	HD6 2009 000153		

PMMA = Polymethylmethacrylate

VI. PROCEDURE

- 1. The sunscreen product was applied to the PMMA plate using the roughened side upper-most by weight, at an application rate of 0.75mg/cm² using a positive-displacement automatic pipette.
- 2. The type of spreading action employed when applying the test product consisted of two phases.
 - a. Phase 1: Spreading with a very light pressure for approximately 30 seconds.
 - b. Phase 2: Spreading with greater pressure for approximately 30 seconds.
- 3. The treated sample was then allowed to equilibrate for 15 minutes in the dark at ambient temperature to help facilitate formation of a standard stabilized product film.
- 4. To account for lack of photostability, the test product was applied on the PMMA plate and irradiated with a fixed dose of UV radiation.
 - a. The pre-irradiation dose was delivered and calculated as illustrated below.

$$Dose = 4 MED = 4 x 200 J / m^2 - eff (800 J / m^2 - eff)$$

Where: MED - Minimal Erythemal Dose, the lowest UV dose that produces skin reddening.

$$1MED = 200 J / m^2 - eff$$

VII. CALCULATIONS

A. Transmittance Measurements

The transmittance values were measured at 1 nanometer intervals on three different plates with a minimum of 5 measurements per plate.

Measurements of spectral irradiance transmitted for each wavelength λ through control PMMA plates coated with 15µL of glycerin (no sunscreen product) were obtained from 5 different locations on the PMMA plate [C₁(λ), C₂(λ), C₃(λ), C₄(λ), and C₅(λ)].

In addition, a minimum of 5 measurements of spectral irradiance transmitted for each wavelength λ through the PMMA plate covered with the sunscreen product were similarly obtained after pre-irradiation of the sunscreen product [P₁(λ), P₂(λ), P₃(λ), P₄(λ), and P₅(λ)].

The mean transmittance for each wavelength, $\overline{T(1)}$ was the ratio of the mean of the C(λ) values to the mean of the P(λ) values, as follows:

$$\overline{T(\mathbf{I})} = \frac{\sum_{1}^{n} P(\mathbf{I})/n}{\sum_{1}^{n} C(\mathbf{I})/n}$$

Where: $n \ge 5$

B. Mean Absorbance Values

Mean transmittance values, $\overline{T(I)}$, were converted into mean absorbance values, $\overline{A(I)}$, at each wavelength by taking the negative logarithm of the mean transmittance value as follows:

$$\overline{A(\mathsf{I})} = -\log \overline{T(\mathsf{I})}$$

C. Determination of Critical Wavelengths

Critical wavelength measurements were used to measure the breadth of the UV absorbance curve. Critical wavelength (λ_c) was the wavelength at which the area under the absorbance curve represented 90 percent of the total area under the curve in the UV region. This was expressed mathematically as:

$$\int_{290}^{1c} \overline{A(1)} d1 = 0.9 \int_{290}^{400} A(1) d1$$

Where: λ_c Critical wavelength

 $\overline{A(I)}$ Mean absorbance at each wavelength

 $d\lambda$ Wavelength interval between measurements

A mean critical wavelength of $\lambda_c = 370$ nm or greater is classified as broad spectrum protection.

Jordan DeSantis Clinical Supervisor

Steve Park Quality Assurance Specialist III

BioScreen Clinical Services 938341 – 938341

Page 8 of 8

Broad Spectrum Report