Nissan R32-R34 Plug-in

USER MANUAL Rev 1.0

Contents

1.0 Introduction	2
2.0 Plugin Features	3
3.0 Installation	4
3.1 Expansion Port	4
3.2 CAN Bus 1 Wiring	5
3.3 Analog Sensor Wiring	7
3.4 Ethanol Content Sensor Wiring	8
4.0 ECU Channel Assignment	10
5.0 Plug-in Specific Information	13
5.1 Fuel Model	13
5.2 Inlet Air Temperature	13
5.3 ECU User Pins 111, 102	13
5.3 EGT Light	13
5.4 Crank(120) and Crank (1) Signal Selection	14
6.0 Diagnostic Trouble Codes (DTCs)	15
7.0 Ordering Information	16
Appendix A – Nissan R32-R34 ECU Pinout	17

1.0 Introduction

The Nissan R32-R34 ECU is designed to be plugged into the OEM harness to allow for a true "Plug and Play" install. The system is based on the KV Series Motorsport ECU, so all the same features are available excluding any limitations based around the OEM connector system. An Expansion port is included giving access to unused Input channels. CAN Bus 1 is also available providing additional I/O expandability.

2.0 Plugin Features

General

- KV8 ECU based platform.
 - Dual 100MHz processors
 - 32MB ECU logging memory
 - Over 1000 logging channels available
 - o 1Hz to 500Hz logging rate
- Aluminium 6061 Grade CNC billet enclosure
- Compatible with all Emtron proven motorsport features(Launch Control, Rolling Launch, Anti-Lag, Traction Control)
- Upgradeable to run the Emtron fuel model through installation of a flex meter, fuel temperature and fuel pressure sensor
- Idle speed closed loop control using DBW with advanced Throttle Mass Flow (TMF) airflow calculations
- Knock control with high speed digital filtering for each cylinder using the OEM sensor with selectable centre frequency and bandwidth
- Pre-configured Calibration file loaded providing a comprehension tuning platform
- Input Expansion Capabilities through DTM connector
 - 3x User Analog Volt Inputs (Fuel Temperature, Fuel Pressure, Inlet Temperature)
 - o 1x User Digital Input (Flex Meter Input and switch inputs)
 - 2x User Analog Inputs
- Emtune software for tuning and data analysis

Communications

- CAN 2.0B Bus 1: User CAN Bus for I/O expansion (Lambda, EGT)
- High Speed Ethernet 100Mbps for tuning software connection

Operating Temperature

Recommended operating range: -30 to 85°C (-22 to 185°F)

Physical

- Enclosure Size 160 mm x 162 mm x 38 mm
- 890g

3.0 Installation

3.1 Expansion Port

The ECU's input capabilities can be expanded using the expansion connection which is a male DTM 12 Way. See Table 3.0.

These additional inputs can be connected to any sensor, but the recommended sensors are indicated in brackets.

Pin	Function
1	Analog Sensor OV Reference
2	5V Vref2 Supply
3	AN 8 (e.g. Fuel Temp or Inlet Temp)
4	AN 9 (e.g. Fuel Temp or Inlet Temp)
5	AN 10 (e.g. Fuel Pressure)
6	DI 6 (e.g. Ethanol Content Sensor)
7	ANV 13
8	ANV 14
9	14V Out Protected (e.g. ELC2 Power Supply)
10	ECU Ground (e.g. ELC2 or E85 Sensor Ground)
11	CAN 1 Hi
12	CAN 1 Lo

Table 3.0 - Expansion Port Pinout (DTM06-12SA)

3.2 CAN Bus 1 Wiring

The ECU CAN Bus 1 is reserved for Emtron CAN Bus devices, expanding the IO capability of the ECU. The following devices can be connected:

- ELC1/2 (Emtron Lambda to CAN 1/2 channel)
- ETC4/ETC8M (Emtron Thermocouple to CAN 4/8 channels)
- EIC10/EIC16M (Emtron Input to CAN 10/16 Channel)

For more information on each device refer to the downloads section on the website: (emtron.world/downloads)

Emtron ELC/ETC4/EIC10 to CAN

All these CAN devices share a common power, ground and CAN pinout using a 4-way DTM. See Table 3.1.

Pin	Function	Wire Colour
1	Ground	BLACK
2	CAN Lo	GREEN
3	CAN Hi	YELLOW
4	12V Supply	RED

Table 3.1. CAN Device Power and CAN Deustch Connector Pinout

To help with installation time, each CAN Device pin can be directly connected into the ECU IO Expansion Port. Pinout information is shown Table 3.2.

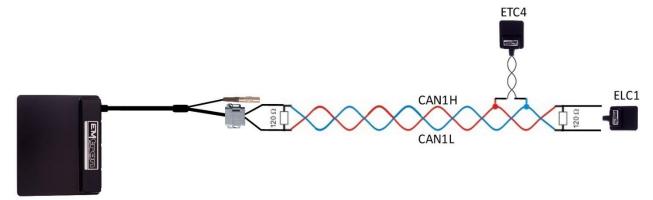

Name	ECU IO Expansion 12-Way DTM	CAN Device 4-Way DTM
Ground	Pin 8	Pin 1
CAN 1 Lo	Pin 12	Pin 2
CAN 1 Hi	Pin 11	Pin 3
Power	Pin 7	Pin 4

Table 3.2. IO Expansion to CAN Device wiring


The following points should be noted when using the CAN Bus:

- CAN Bus High and Low are differential signals, so twisted pair MUST be used. Failing to do so will compromise the entire CAN Bus System. It is recommended to twist the CAN wire pairs at a minimum one twist per 40mm of cable.
- In some extreme environments, shielded twisted pair may be required to help with reliability and data integrity.
- The less connectors in any transmission system the better. Unnecessary connectors are almost guaranteed to present an impedance discontinuity and hence may cause reflections and data loss.
- CAN Bus termination must be done correctly by using a 120 ohm 0.25W resistor at each END of the bus system. See the example in Figure 3.1.
- Maximum Stub length to a device from the main Bus is recommended at 0.3m, in accordance with High-Speed ISO 11898 Standard specification. See Figure 3.2.

ALL Emtron CAN devices do **not** include an on-board CAN termination resistor, allowing the device to be wired at any position on the Bus. CAN Bus termination must be done correctly by using a 120 ohm 0.25W resistor at each end of the bus system as mentioned above.

Plugin ECU

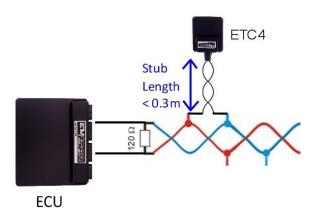


Figure 3.2. CAN Bus Wiring Example. Stub Length less than 0.3m

3.3 Analog Sensor Wiring

5V VRef2 Sensor Supply Pin (Pin 2 of Expansion port)

This is a 250mA 5V output designed to supply automotive sensors.

Sensor OV Reference Pin (Pin 1 of Expansion port)

This pin should be connected directly to the OV (Ground) pin on any low current analog sensor, for example Pressure or Temperature. Figures 3.3 and 3.4 show the correct and incorrect wiring system.

- **DO NOT** connect the OV Reference pin directly to the Engine Block or ECU Ground. This is a dedicated and specialised OV/ground output for analog sensors.
- **DO NOT** connect frequency-based sensor grounds to the OV Reference pin; for example, an Ethanol content sensor. Use Pin 8 (Ground) in the Expansion port.

Figure 3.3. Correct Pressure Sensor OV Wiring

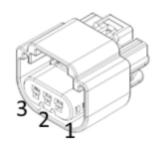


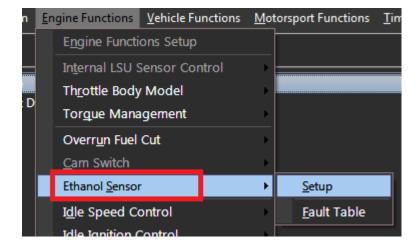
Figure 3.4. Incorrect Pressure Sensor OV Wiring

3.4 Ethanol Content Sensor Wiring

An Ethanol Content sensor can be wired into the ECU using the Expansion port. The following channel assignment is recommended for the GM sensor:

GM Sensor Pinout	Expansion Port	Description
Pin 1	Pin 9. 14V Protected	Supply, 8V or 14V
Pin 2	Pin 10. ECU Ground	Ground
Pin 3	Pin 6. DI 6	Output. Temperature and Ethanol Content

NOTE:


- DO NOT connect the Ethanol Content sensor ground to the "Analog Sensor OV Reference". Use the ECU Ground from Pin 10 in the Expansion port.
- The Ethanol sensor produces a frequency based output. Suitable ECU channels are DI 1-8.

Description	Calibration
Ethanol Content (%)	50Hz = 0% Ethanol
	150Hz = 100% Ethanol
Fuel Temperature	1ms = -40 DegC
	5ms = 125 DegC

To config the ECU for this sensor, select the Ethanol Sensor Input Source to DI6. The ECU will automatically decode the Ethanol Content and Fuel Temperature.

Inputs Setup					
Engine Vehicle Switches V	VT	Speed	DBW/Servo	Lambda Cyls	EGT
Channel Name	Ab	rv	Input		
Longitudinal G Force	GI	ong	Internal G-Fo	rce	
Lateral G Force	GI	at	Internal G-Fo	rce	
Vertical G Force	G١	/ert	Internal G-Fo	rce	
Roll	Ro	II	OFF		
Pitch	Pit	ch	OFF		
Vehicle Yaw Rate	Ya	N	OFF		
Ethanol Sensor	E8	5	DI 6		

Once the Ethanol Senor has been assigned an input, more settings become available in the Tuning View -> Engine Functions menu.

4.0 ECU Channel Assignment

ECU Channel - Injection	Function
Injection Channel 1	Fuel Injector Cylinder 1
Injection Channel 2	Fuel Injector Cylinder 2
Injection Channel 3	Fuel Injector Cylinder 3
Injection Channel 4	Fuel Injector Cylinder 4
Injection Channel 5	Fuel Injector Cylinder 5
Injection Channel 6	Fuel Injector Cylinder 6
Injection Channel 7	O2 Heater
Injection Channel 8	Not Used
Injection Channel 9	Not Used
Injection Channel 10	Not Used
Injection Channel 11	Not Used
Injection Channel 12	Not Used

ECU Channel - Ignition	Function
Ignition Channel 1	Ignition Cylinder 1
Ignition Channel 2	Ignition Cylinder 2
Ignition Channel 3	Ignition Cylinder 3
Ignition Channel 4	Ignition Cylinder 4
Ignition Channel 5	Ignition Cylinder 5
Ignition Channel 6	Ignition Cylinder 6
Ignition Channel 7	FPCM1
Ignition Channel 8	FPCM1
Ignition Channel 9	Trigger Sensor 120/1 Control
Ignition Channel 10	Not Used
Ignition Channel 11	Not Used
Injection Channel 12	Not Used

ECU Channel - Analog Inputs	Function	
Analog Voltage 1	TPS	
Analog Voltage 2	02 Front	
Analog Voltage 3	02 Rear	
Analog Voltage 4	MAF (Rear R32)	
Analog Voltage 5	MAF Front R32	
Analog Voltage 6	Not Used	
Analog Voltage 7 (Pull-up Channel)	Engine Temperature	
Analog Voltage 8 (Pull-up Channel)	(IO Expansion port)	
Analog Voltage 9 (Pull-up Channel)	(IO Expansion port)	
Analog Voltage 10 (Pull-up Channel)	(IO Expansion port)	
Analog Voltage 11 (Pull-up Channel)	Not Used	
Analog Voltage 12 (Pull-up Channel)	Not Used	
Analog Voltage 13	Not Used	
Analog Voltage 14	Not Used	

NOTE: Analog Voltage Channels 7-12 have switchable pull-ups which are suitable for temperature measurement.

ECU Channel - Digital Inputs	Function
Digital Input 1	Vehicle Speed
Digital Input 2	Neutral Switch
Digital Input 3	Start Switch
Digital Input 4	AC Request Switch
Digital Input 5	Alternator FR Signal
Digital Input 6	IO Expansion port (Ethanol Sensor)
Digital Input 7	Power Steer Pressure Switch
Digital Input 8	Not Used
Digital Input 9	Not Used
Digital Input 10	Not Used
Digital Input 11	Not Used
Digital Input 12	Not Used
Digital Input 13	Not Used
Digital Input 14	Not Used

ECU Channel - Auxiliary Outputs	Function
Auxiliary 1	VTC Solenoid
Auxiliary 2	Wastegate Solenoid
Auxiliary 3	Tacho
Auxiliary 4	ISC Solenoid
Auxiliary 5	Fuel Pump Relay
Auxiliary 6	A/C Clutch Relay
Auxiliary 7	CE Light
Auxiliary 8	Fan Relay (R32)
Auxiliary 9	EGT Light (R33)
Auxiliary 10	Injector %DC Display
Auxiliary 11	Connected to pin 111 (user output – 5A)
Auxiliary 12	Connected to pin 112 (user output – 5A)
Auxiliary 13	Not Used
Auxiliary 14	Not Used
Auxiliary 15	Not Used
Auxiliary 16	Not Used

ECU Channel - Crank/Cam	Function
Crank Index	Crank Position Sensor (120 Deg)
Sync Sensor	Crank Position Sensor (1 Deg)

5.0 Plug-in Specific Information

5.1 Fuel Model

The ECU has the ability of using any Emtron based Fuel Model however the base calibration provided implements a simple version of Speed Density. The Main VE Table has the Efficiency Calculation configured to span against TPS. This allows the mapping process to be simplified. The fuel calculation will still account for Inlet Manifold Pressure. The Lambda Target is modified by a combination of Engine Speed and Manifold Pressure in the base calibration and allows for increasing enrichment based on an increase in the engine load.

5.2 Inlet Air Temperature

Factory Inlet Air Temperature using ECU input ANV 8 is available on most models. If the input shows 4.85V or higher this sensor is not connected and will need to be fitted and wired in using the Expansion port. Refer to section 3.1.

5.3 ECU User Pins 111, 102

ECU pins 111 and 102 are unused OEM pins which connect directly to Aux 11 and 12 respectively. These are Half Bridge drivers with the following current rating:

5A continuous and 8A limit. Can be used as Low Side, High Side or together for DC motor control.

5.3 EGT Light

The R33 models has an EGT Light on Auxiliary 9. This can be configured and controlled from a User Channel.

Function Setup								
Engine Functions	Vehicle Functions	1 Vehicle Functions 2	Motorsport	Functions	Timer F	unctions	User Fun	ctions
Channe	l Name	Output Channel Assig	n Type	Mo	de	Invert	Pullup	Frequency
User Output 1 - R	3x Trigger	ignition Channel 9	Low	Switched	i i	OFF	OFF	
User Output 2 - E	GT Light /	Auxiliary Channel 9	Low	Switched	ł	OFF	OFF	
User Output 3 -	(OFF						
User Output 4 -	(OFF						

5.4 Crank(120) and Crank (1) Signal Selection

For the correct engine decoding, the ECU Crank Index input should be connected to the Nissan 120 degree signal and Sync input connected to the Nissan 1 degree signal. The R32 and R33 should not require the signal swap enabled. The R34 will require the enabling of the Crank (120) and Crank (1) signal swap which will prevent the engine from starting; cranking RPM will read extremely high if the pin swap is not enabled. These signals can be swapped using internal circuity controlled by Ignition 9 i.e. it doesn't require any physical pins to be swapped. Table 5.0 shows the Ignition 9 control options. A User channel can be configured to control this.

Function Setup							
Engine Functions	Vehicle Function	s 1 Vehicle Functions 2	Motorsport F	unctions	Timer Func	tions User F	unctions
Channe	l Name	Output Channel Assig	n Type	Mo	de In	vert Pullu	Frequenc
User Output 1 - R	3x Trigger	Ignition Channel 9	Low	Switched	I OF	F OFF	
User Output 2 - E	G I Light	Auxiliary Channel 9	Low	Switched	I OF	F OFF	
User Output 3 -		OFF					
User Output 4 -		OFF					

	Ignition 9 OFF	Ignition 9 ON
ECU Pin 41/51	Crank Signal 120 degree	Crank Signal 1 Degree
ECU Pin 42/52	Crank Signal 1 Degree	Crank Signal 120 degree

Table 5.0. Ignition 9 Crank Signal Configuration.

6.0 Diagnostic Trouble Codes (DTCs)

On initial installation it is advised to clear all the DTC's if error(s) are reported. To check: connect to Emtune and look at the DTC status in the bottom toolbar. If there are Errors the status box will be Red as shown in Figure 6.0.

Diagnostic Trouble Code	Status	Error Count	
P0117 Engine Coolant Temperature Circuit Low Input			
P0118 Engine Coolant Temperature Circuit High Input			
P0115 Engine Coolant Temperature Circuit			
P0112 Inlet Air Temperature Circuit Low Input			
P0113 Inlet Air Temperature Circuit High Input			
P0110 Inlet Air Temperature Circuit			
P0122 Throttle Position Sensor 1 Circuit Low Input	FAULT	1	
P0123 Throttle Position Sensor 1 Circuit High Input			
P0120 Throttle Position Sensor 1 Circuit			
P0107 Manifold Absolute Pressure Circuit Low Input	FAULT	1	
P0108 Manifold Absolute Pressure Circuit High Input			
P0105 Manifold Absolute Pressure Circuit			
P0xxx Throttle Position Sensor 2 Circuit Low Input	FAULT	1	
P0xxx Throttle Position Sensor 2 Circuit High Input			
P0xxx Throttle Position Sensor 2 Circuit			
P0227 Pedal Position Sensor 1 Circuit Low Input	FAULT	1	
Help Clear All DTC Update DTC DTC Cou	nt: 8		Close

Figure 6.0. DTC example showing 8 errors.

To open the DTC window, click on the DTC Status box in the bottom toolbar OR use the File menu -> Open DTC. Next select "Clear ALL DTCs" and confirm all the Error Codes have been removed; the DTC Status box should go Green indicating this as shown in Figure 6.1. Close the DTC window.

Diagnostic Trouble Code	Status	Error Count	
P0117 Engine Coolant Temperature Circuit Low Input			
P0118 Engine Coolant Temperature Circuit High Input			
P0115 Engine Coolant Temperature Circuit			
P0112 Inlet Air Temperature Circuit Low Input			
P0113 Inlet Air Temperature Circuit High Input			
P0110 Inlet Air Temperature Circuit			
P0122 Throttle Position Sensor 1 Circuit Low Input			
P0123 Throttle Position Sensor 1 Circuit High Input			
P0120 Throttle Position Sensor 1 Circuit			
P0107 Manifold Absolute Pressure Circuit Low Input			
P0108 Manifold Absolute Pressure Circuit High Input			
P0105 Manifold Absolute Pressure Circuit			
P0xxx Throttle Position Sensor 2 Circuit Low Input			
P0xxx Throttle Position Sensor 2 Circuit High Input			
P0xxx Throttle Position Sensor 2 Circuit			
P0227 Pedal Position Sensor 1 Circuit Low Input			
Help Clear All DTC Update DTC DTC Count:	0		Close
	0		Close

Figure 6.1. DTC example showing no errors.

If the Error Codes have not all been removed, select "Update DTC" then use the DTC window to locate the sensor that is on fault.

7.0 Ordering Information

Product	Part Number
Emtron Nissan R32-R34 Plugin	1609-1834
Emtron Ethernet Tuning Cable (1.5m)	553-15

Appendix A – Nissan R32-R34 ECU Pinout

Pin	Function	Channel Assignment
101	Injector 1	INJ 1
102	N/C	AUX 12
103	Injector 3	INJ 3
104	Fuel Pump Control #1	IGN 7
105	Injector 2	INJ 2
106	Fuel Pump Control #2	IGN 8
107	Injector Ground	ECU GROUND
108	Injector Ground	ECU GROUND
109	N/C	
110	Injector 5	INJ 5
111	N/C	AUX 11
112	Injector 6	INJ 6
113	VTC Solenoid (R33)	AUX 1
114	Injector 4	INJ 4
115	O2 Heater Rear (R33/R34)	INJ 7
116	Injector Ground	ECU GROUND

Pin	Function	Channel Assignment
1	Ignition 1	IGN 1
2	Ignition 5	IGN 5
3	Ignition 3	IGN 3
4	Idle Speed Control Solenoid	AUX 4
5	AT Shift Request	DI 5
6	Engine Fan Relay (R32)	AUX 8
7	Tacho	AUX 3
8	Ignition Switch (some models only)	Ignition Switch
9	A/C Clutch Relay	AUX 6
10	Ignition Ground	ECU GROUND
11	Ignition 6	IGN 6
12	Ignition 2	IGN 2
13	Ignition 4	IGN 4
14	N/C	
15	N/C	
16	ECCS Relay	EFI RELAY
17	Injector %DC Display (or E85)	AUX 10
18	Fuel Pump Relay	AUX 5
19	Power Steer Pressure Switch	DI 7
20	Ignition Ground	ECU GROUND

Pin	Function	Channel Assignment
21	N/C	
22	N/C	
23	Knock Sensor 1	Knock 1+
24	Knock Sensor 2	Knock 2+
25	Wastegate Solenoid	AUX 2
26	MAF Ground	ECU GROUND
27	Mass Air Flow Sensor (Rear)	ANV 4
28	Engine Coolant temperature	ANV 7
29	O2 Sensor Front	ANV 2
30	Sensor Ground (Coolant, O2)	Sensor OV Reference
31	Clock (Sync Signal)	
32	CE Light	AUX 7
33	EGT Light (R33)	AUX 9
34	MAF Ground	ECU GROUND
35	Mass Air Flow Sensor (Front)	ANV 5
36	Inlet Air Temperature (some models only)	ANV 8
37	N/C	
38	Throttle Closed Switch	ANV 1
39	N/C	
40	Sensor Ground (MAP, TPS)	Sensor 0V Reference

Pin	Function	Channel Assignment
41	Crank Position Sensor (120)	Crank Index
42	Crank Position Sensor (1)	Sync Sensor
43	Start Switch	DI 3
44	Neutral Switch	DI 2
45	Ignition Switch	Ignition Switch
46	A/C Request Switch	DI 4
47	N/C	
48	TPS +5V Supply	+ 5V Supply
49	Control Unit Power Supply	ECU SUPPLY
50	Control Unit Ground	ECU GROUND
51	Crank Position Sensor (120)	Crank Index
52	Crank Position Sensor (1)	Sync Sensor
53	Vehicle Speed Sensor	DI 1
54	N/C	
55	O2 Sensor Rear	ANV 3
56	Throttle Position Out	AV OUT 1
57	N/C	
58	Battery Backup (+12 Constant)	Internal Flywheel Supply
59	Control Unit Power Supply	ECU SUPPLY
60	Control Unit Ground	ECU GROUND

Emtron Australia Pty Ltd

Unit 8, 36 Lidco Street Arndell Park NSW 2148 Australia

(See the www for contact information)

www.emtron.world

www.emtronaustralia.com.au