

WS890 Water-Soluble Lead-Free Solder Paste

Introduction

WS890 solder paste is an excellent all-around water-soluble lead-free solder paste. WS890 has superior wetting, very low solder balling and graping. WS890 has been formulated for environmental stability giving long stencil life and excellent print characteristics.

Attributes

- Superior reflow characteristics.
- Environmentally stable long stencil life.
- Excellent print characteristics.

Solder Alloy	Solder Powder Size Availability (IPC J-STD-005)	Melting Range (°C)
SAC305	Type 3 or 4	217 - 220
SN100C	Type 3 or 4	227
Sn/Ag 3.5%	Type 3	221
Anti-tombstoning mixtures	Type 3 or 4	Range depends on the mixture

Other sizes of solder powder are available upon request.

The size range for the solder powder types are as follows:

- Type 3 (25-45 μm >80%). Mesh -325/+500
- Type 4 (20-38 μm >80%). Mesh -400/+635
- Type 5 (15-25 μm >80%). Mesh -500/+800

Solder Paste Packaging	Net Weight (grams)
Jars	250, 500
Cartridges	500 or 600 (6 oz), 700 (8 oz), 1300 (12 oz)
Syringes	30, 100
Enclosed print systems	800

Compatible Products

150N, 152N, 159HF liquid fluxes. WS890 gel flux.

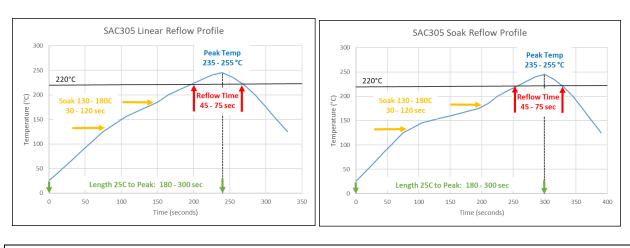
Storage and Handling

- \circ Shelf life is 9 months when stored at 0 to 10 °C (32 to 50 °F).
- Accidental warming of solder paste above 29 °C (85 °F) for a period of time can cause detrimental effects.
- Warm the solder paste to room temperature before use. Do not force warming by heating the solder paste. Keep the solder paste sealed while warming. Warming typically takes 3 to 4 hours when the solder paste is sitting at room temperature. Warming overnight is acceptable.

- Once the solder paste container is opened then the solder paste should be kept at room temperature until completely used. Unused solder paste should be kept sealed in the original container. If the remaining solder paste will not be used within a few days, then the solder paste can be sealed and stored in a cooler until needed.
- Solder paste used in the print process should not be added to a container with fresh solder paste. This will change the rheology of the fresh solder paste. Solder paste used on the printer can be stored in a separate container at room temperature. Used solder paste can be reused but print and reflow characteristics will degrade over time.
- After printing, the solder paste should be reflowed within a normal processing time. The maximum allowable time between print and reflow is 8 hours.

Print Parameter	Preferred	Acceptable
Solder paste bead size	1.5 to 2.0 cm (0.60 to 0.80 in)	1.0 to 2.5 cm (0.40 to 1.0 in)
Squeegee blade	Fine grain stainless steel. 60°	Any type of stainless steel
	from horizontal. 45° from	
	horizontal for pin in paste.	
Stencils	Fine grain (2-5 μm) or ultra-fine	All types of commercially
	grain (1-2 μm) stainless steel	available stencils
Print speed	30 to 100 mm/sec (1.2 to 4.0	20 to 200 mm/sec (0.8 to 8.0
	in/sec)	in/sec)
Pressure / blade length	0.27 to 0.36 kg/cm (1.5 to 2.0	0.27 to 0.54 kg/cm (1.5 to 3.0
(increase with increasing speed)	lbs/in)	lbs/in)
Separation speed	1.0 to 5.0 mm/sec	0.5 to 10.0 mm/sec
Underside stencil cleaning	Wet / vacuum / vacuum cycle	Other cleaning cycles every 1 to
	every 1-5 prints	20 prints depending upon
		technology
Stencil life	8 hours at 18-29 °C (65-85 °F)	Stencil life may be shorter
	and 10-70% RH.	outside of the preferred
		conditions.

Blade pressure should be set as low as possible to clean off the stencil. Higher blade pressures
will increase stencil and blade wear, and can lead to "scooping" and other print defects.


 Underside stencil cleaning is best accomplished with commercial cleaners and high quality wipe materials. Nano-coated stencils can be used to reduce the frequency of underside cleaning.

Reflow Parameter	Preferred	Acceptable
Profile length (25 °C to peak)	3.5 to 4.5 min (210 to 270 sec)	3.0 to 5.0 min (180 to 300 sec)
Heating ramp rate maximum (20 second window)	2.0 °C/sec max	3.0 °C/sec max
Preheat / soak time (130 - 180 °C)	60 - 90 sec	30 to 120 sec
Peak temperature	240 – 250 °C for SAC alloys 245 – 255 °C for SN100C	235 – 255 °C for SAC alloys 240 – 260 °C for SN100C
Reflow time (time above liquidus)	55 to 65 sec	45 - 75 sec
Cooling ramp rate minimum (20 second window)	4.0 °C/sec min	2.0 °C/sec min

 Reflow time should be calculated based on the liquidus point of the alloy used: SN100C = 227°C, SAC305 = 220°C, Sn96.5/Ag3.5 = 221°C.

Example reflow profile graphs are shown below. These are a good starting point but they can be modified to fit the product and process. Contact FCT Assembly for assistance with reflow profiling.

Cleaning

Raw solder paste can be removed from the stencil, squeegee blades, and circuit boards using a variety of commercial cleaners. Isopropyl alcohol (IPA) can also be used.

WS890 flux residues are corrosive and must be removed using a suitable wash process. It is recommended to remove WS890 flux residues within 4 hours after soldering using D.I. water heated to 100 - 180 °F in standard washing equipment. It is possible to wash away WS890 flux residues after multiple heat cycles followed by a 24 hour hold time, although this is not recommended.

Wear chemically resistant gloves when handling solder paste. Avoid breathing fumes, especially during reflow of the solder paste. Follow the guidelines detailed in the Safety Data Sheet (SDS).

J-STD-004 Flux Standard	Test Method	Result
J-STD-004 classification	J-STD-004 methods	ORH1
Halide ion content (Br ⁻ , Cl ⁻ , F ⁻ , I ⁻)	IPC 2.3.28.1	1.7 to 1.8% wt of solids
Halogen content (Br and Cl)	EN 14582, IPC 2.3.28.1	6.8 to 7.2% wt of solids
Halide by silver chromate	IPC 2.3.33	Halides detected
Fluoride by spot test	IPC 2.3.35.1	None detected
Copper mirror	IPC 2.3.32	High activity
Copper corrosion	IPC 2.6.15	Corrosion present
Surface Insulation Resistance (SIR)	IPC 2.6.3.7	Pass > 1.00E+08 ohms
Electro Chemical Migration (ECM)	IPC 2.6.14.1	Pass, increase of 1.5 Log ₁₀ ohms
J-STD-005 Solder Paste Standard	Test Method	Result
Viscosity - Brookfield	IPC 2.4.34	800 - 900 Kcps typical

Slump - frosted glass	IPC 2.4.35	Pass
Solder balling - frosted glass	IPC 2.4.43	Preferred
Wetting - copper	IPC 2.4.45	Pass

