

WS159 Water Soluble Tin-Lead Solder Paste

Introduction

WS159 solder paste is a high activity water soluble tin-lead solder paste. WS159 shows consistent and repeatable printing, excellent wetting, very low solder balling and graping, and has very low voiding potential. WS159 flux residues are easy to clean using D.I. water. WS159 is also halide free.

Attributes

- Consistent and repeatable printing.
- Ideal reflow performance with excellent wetting, very low solder balling and graping.
- Very low potential for voiding.
- Flux residues are easy to clean using D.I. water.
- Halide free.

Solder Alloy	Solder Powder Size Availability (IPC J-STD-005)	Melting Range (°C)
Sn63/Pb37	Type 3 or 4	183
Sn62/Pb36/Ag2	Type 3	179
Anti-tombstoning mixtures	Type 3 or 4	Range depends on the mixture

- Other sizes of solder powder are available upon request.
- The size range for the solder powder types are as follows:
 - O Type 3 (25-45 μm >80%). Mesh -325/+500
 - Type 4 (20-38 μm >80%). Mesh -400/+635
 - \circ Type 5 (15-25 μ m >80%). Mesh -500/+800

Solder Paste Packaging	Net Weight (grams)
Jars	250, 500
Cartridges	500 or 600 (6 oz), 700 (8 oz), 1300 (12 oz)
Syringes	30, 100
Enclosed print systems	800

Compatible Products

150N, 152N, 159HF liquid fluxes. WS159 gel flux.

Storage and Handling

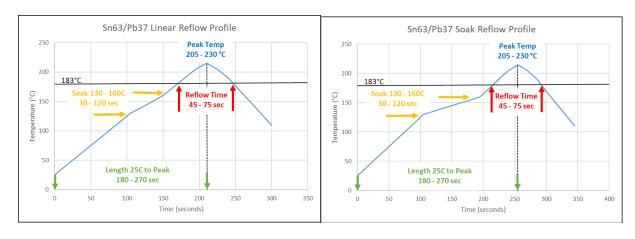
- Shelf life is 9 months when stored at 0 to 10 °C (32 to 50 °F).
- Accidental warming of solder paste above 29 °C (85 °F) for a period of time can cause detrimental effects.

- Warm the solder paste to room temperature before use. Do not force warming by heating the solder paste. Keep the solder paste sealed while warming. Warming typically takes 3 to 4 hours when the solder paste is sitting at room temperature. Warming overnight is acceptable.
- Once the solder paste container is opened then the solder paste should be kept at room temperature until completely used. Unused solder paste should be kept sealed in the original container. If the remaining solder paste will not be used within a few days, then the solder paste can be sealed and stored in a cooler until needed.
- Solder paste used in the print process should not be added to a container with fresh solder paste. This will change the rheology of the fresh solder paste. Solder paste used on the printer can be stored in a separate container at room temperature. Used solder paste can be reused but print and reflow characteristics will degrade over time.
- After printing, the solder paste should be reflowed within a normal processing time. The maximum allowable time between print and reflow is 4 hours.

Print Parameter	Preferred	Acceptable
Solder paste bead size	1.5 to 2.0 cm (0.60 to 0.80 in)	1.0 to 2.5 cm (0.40 to 1.0 in)
Squeegee blade	Fine grain stainless steel. 60°	Any type of stainless steel
	from horizontal. 45° from	
	horizontal for pin in paste.	
Stencils	Fine grain (2-5 μm) or ultra-fine	All types of commercially
	grain (1-2 μm) stainless steel	available stencils
Print speed	30 to 100 mm/sec (1.2 to 4.0	20 to 200 mm/sec (0.8 to 8.0
	in/sec)	in/sec)
Pressure / blade length	0.18 to 0.27 kg/cm (1.0 to 1.5	0.18 to 0.54 kg/cm (1.0 to 3.0
(increase with increasing speed)	lbs/in)	lbs/in)
Separation speed	1.0 to 5.0 mm/sec	0.5 to 10.0 mm/sec
Underside stencil cleaning	Wet / vacuum / vacuum cycle	Other cleaning cycles every 1 to
	every 1-5 prints	20 prints depending upon
		technology
Stencil life	4 hours at 18-29 °C (65-85 °F)	Stencil life may be shorter
	and 10-70% RH.	outside of the preferred
		conditions.

- Blade pressure should be set as low as possible to clean off the stencil. Higher blade pressures will increase stencil and blade wear, and can lead to "scooping" and other print defects.
- Underside stencil cleaning is best accomplished with commercial cleaners and high quality wipe materials. Nano-coated stencils can be used to reduce the frequency of underside cleaning.

Reflow Parameter	Preferred	Acceptable
Profile length (25 °C to peak)	3.5 to 4.0 min (210 to 240 sec)	3.0 to 4.5 min (180 to 270 sec)
Heating ramp rate maximum	2.0 °C/sec max	3.0 °C/sec max
(20 second window)		
Preheat / soak time (130 - 160	50 to 90 sec	30 to 120 sec
°C)		
Peak temperature	210 – 220 °C for Sn63/Pb37	205 – 230 °C for Sn63/Pb37
	alloys	alloys



Reflow time (time above	55 to 65 sec	45 - 75 sec
liquidus)		
Cooling ramp rate minimum (20	4.0 °C/sec min	2.0 °C/sec min
second window)		

Reflow time should be calculated based on the liquidus point of the alloy used: Sn63/Pb37 = 183°C, Sn62/Pb36/Ag2 = 179°C.

An example reflow profile graph is shown below. This is a good starting point but can be modified to fit the product and process. Contact FCT Assembly for assistance with reflow profiling.

Cleaning

Raw solder paste can be removed from the stencil, squeegee blades, and circuit boards using a variety of commercial cleaners. Isopropyl alcohol (IPA) can also be used.

WS159 flux residues are corrosive and must be removed using a suitable wash process. It is recommended to remove WS159 flux residues within 4 hours after soldering using D.I. water heated to 100 - 180 °F in standard washing equipment. It is possible to wash away WS159 flux residues after multiple heat cycles followed by a 24 hour hold time, although this is not recommended.

Safety

Wear chemically resistant gloves when handling solder paste. Avoid breathing fumes, especially during reflow of the solder paste. Follow the guidelines detailed in the Safety Data Sheet (SDS).

J-STD-004 Flux Standard	Test Method	Result
J-STD-004 classification	J-STD-004 methods	ORH0
Halide ion content (Br ⁻ , Cl ⁻ , F ⁻ , I ⁻)	IPC 2.3.28.1	0% wt
Halogen content (Br and Cl)	EN 14582, IPC 2.3.28.1	3.2 to 3.5% wt of solids
Halide by silver chromate	IPC 2.3.33	No halides detected
Fluoride by spot test	IPC 2.3.35.1	None detected
Copper mirror	IPC 2.3.32	High activity
Copper corrosion	IPC 2.6.15	Corrosion present

Surface Insulation Resistance (SIR)	IPC 2.6.3.7	Pass > 1.00E+8 ohms
Electro Chemical Migration (ECM)	IPC 2.6.14.1	Pass, increase of 2.0 Log ₁₀ ohms
J-STD-005 Solder Paste Standard	Test Method	Result
Viscosity - Brookfield	IPC 2.4.34	700 - 900 Kcps typical
Slump - frosted glass	IPC 2.4.35	Pass
Solder balling - frosted glass	IPC 2.4.43	Preferred
Wetting - copper	IPC 2.4.45	Pass

