
INTRODUCTION

Sleep is the most basic and essential physiological require-
ment for maintaining health, mental stability, and memory re-
trieval (Lo et al., 2016; Schouten et al., 2017). Based on elec-
troencephalogram frequency-band rhythms, that is, delta (δ), 
theta (θ), alpha (α), beta (β), and gamma (γ) rhythms, sleep is 
classified into five stages, namely, non-rapid eye movement 
(NREM) sleep (stages I to IV) and rapid eye movement (REM) 
sleep (stage V), which occur in alternating cycles (Dorosh-
enkov et al., 2007), although recently an automatic, 6-stage, 
electroencephalographic sleep classification method was pro-
posed (Diykh et al., 2016). While δ rhythm dominates NREM 
sleep, θ rhythm is commonly observed during REM sleep (Do-
roshenkov et al., 2007; Luppi et al., 2017). Accordingly, elec-
troencephalography (EEG) can be employed to identify sleep 
disorders and to aid the predictions of treatment outcomes in 
various psychiatric diseases (Olbrich et al., 2015). 

Sleep disorders not only reduce quality of life but also serve 

as risk factors of dementia (Mishima, 2016) and metabolic dis-
eases, like atherosclerosis (Tobaldini et al., 2017), and hence, 
early intervention is clinically relevant as it potentially mitigates 
harmful consequences. Recently developed drugs that have 
been used to treat insomnia, but can have undesirable side 
effects (Kay-Stacey & Attarian, 2016). Furthermore, reports 
indicate lotus leaf extract augments hypnosis by binding to 
γ-aminobutyric acid A (GABAA) receptor (Tian and Liu, 2015; 
Yan et al., 2015), and that consuming dairy products supports 
sleep in a better way (Kitano et al., 2014). Alpha (α)s1-casein 
hydrolysate (αS1-CH) is a milk protein with reported chronic 
stress relieving properties (Guesdon et al., 2006; Kim et al., 
2007). However, although the tryptic hydrolysate of αS1-casein 
appears to improve sleep quality (Dela Peña et al., 2016), little 
data is available on the way it affects pentobarbital-induced 
sleep in mice or influences EEG band rhythms during stages 
of sleep. Furthermore, it has not been determined whether 
αS1-CH mediates its hypnotic action in mice via GABAA recep-
tor in hypothalamus. Therefore, we investigated the effects of 
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αS1-CH on sleep duration, sleep quality as determined by elec-
troencephalography, and on the protein expression of GABAA 
receptor subunits (α1, β1, γ3) in the rat hypothalamus. 

MATERIALS AND METHODS

Chemicals
Bovine αS1-casein hydrolysate (αS1-CH), commercialized as 

Lactium®, was obtained from Ingredia (Arras, France). Pen-
tobarbital sodium was obtained from Hanlim Pharm (Seoul). 
Diazepam and other chemicals were purchased from Sigma-
Aldrich (St. Louis, MO, USA). 

Animals and treatments
Male C57BL/6 mice (28-30 g) and Sprague-Dawley rats 

(male, 260-280 g) were purchased from the Orient Bio (Seoul, 
Korea) and allowed free access to water and food. Mice were 
grouped into six per cage, and maintained in an ambient at-
mosphere at 23°C under a 12 h diurnal light cycle. Rodents 
were divided into groups: 6 groups of mice for sleep testing, 
3 groups of rats for EEG recording, and 3 groups of rats for 
western blotting. All behavioral experiments were carried out 
in a nearby room maintained where under the same environ-
mental conditions. Experiments were conducted according to 
Animal Care and Use Guidelines of the School of Medicine, 
Ewha Womans University, Korea. 

Mice were given a single dose (30-240 mg/kg, p.o.) of αS1-
CH or saline 30 min prior to an injection of pentobarbital so-
dium (42 mg/kg, i.p.) to determine the onset and duration of 
sleep, as previously described by Ma et al. (2009) with slight 
modification. Time elapsed between disappearance (sleep 
onset) and reappearance of righting reflex (up to a maximum 
of 2 h) was defined as sleep duration. Experiments were per-
formed in mouse cages with aspen bedding. Animals that 
did not sleep within 15 min after pentobarbital injection were 
excluded. Rats were treated with αS1-CH (150 or 300 mg/kg) 
orally once per day for 3 days before electroencephalography 
(EEG) or western blotting. EEG recordings were started at 2 
hrs after last treatment, and hypothalami were collected at 6 
hrs after last treatment for western blotting.

Electroencephalography 
Rats were anesthetized with pentobarbital (50 mg/kg, i.p.) 

and a transmitter was implanted for EEG recording via telem-
etry as previously described (Sanford et al., 2006). Briefly, in 
each case, the body of the transmitter was subcutaneously 
implanted just posterior to the scapula using three sutures for 
stabilization. The transmitter electrodes were led subcutane-
ously to the skull, and their bare ends were placed in contact 
with the dura through holes in the skull. Electrodes were an-
chored to the skull with screws and dental cement. All surgi-
cal procedures were performed stereotaxically under aseptic 
conditions.

For telemetric recording of cortical EEG signals, transmitter 
gain was set at -0.5/+0.5 volts per unit. Raw output signals, 
which ranged from 0.5 to 0.0 Hz, were processed using a Data 
Sciences analog converter and routed to an analog-to-digital 
(AD) converter (Eagle PC30, Data Sciences International, St. 
Paul, MN, USA), which digitized EEG and activity signals. 
Subsequently data were transferred to a computer and graphi-
cally displayed. An on-line fast Fourier transformation (FFT) 

program was used to analyze EEG data and generate power 
density values from 0.0 to 20.0 Hz at a resolution of 0.5 Hz. 
FFT data were further averaged between 0 to 20 Hz at 10-s 
intervals. Sleep data and FFT results were saved to hard disk 
every 10 s for additional off-line analysis. Number of animal 
movements related to telemetry receiver generated transistor-
transistor logic pulses were viewed as measures of activity. 
Data were gathered on the 1st and 3rd days after αS1-CH 
treatment and percentage power densities were calculated. 
EEG signals were measured for 6 hrs between 11:00 am 5:00 
pm. Each group contained 5-6 rats.

Determination of sleep behaviors using EEG signals
Times elapsed in wakefulness, NREM sleep, or REM sleep 

was determined using digitized data using animal sleep anal-
ysis software Sleep-Sign 2.1 (Kissei Comtec, Matsumoto, 
Japan). Briefly, this software identifies wakefulness as high-
frequency, low-amplitude EEG, NREM sleep as spikes inter-
spersed with slow waves, and REM sleep as δ-waves  (0.75 to 
4.0 Hz) with θ-wave activity (5.0 to 9.0 Hz) of peak frequency 
7.5 Hz.

Western blotting 
Six hrs after the last administration of αS1-CH, rats were 

decapitated and brains were quickly removed and chilled in 
ice-cold saline. Coronal sections were obtained using a rodent 
brain matrix (ASI Instruments, Warren, MI, USA). Hypothalami 
were dissected out, immediately frozen on dry ice, and stored 
at -80°C. Frozen tissue samples were homogenized in PRO-
PREP protein-extraction solution (Intron Biotechnology Inc., 
Seongnam, Korea) and centrifuged at 13,000 rpm at 4°C for 
20 min. Protein concentrations in supernatants were deter-
mined and 40 μg aliquots were subjected to polyacrylamide 
gel electrophoresis. Proteins were then transferred to poly-
vinylidene fluoride membranes (Hybond-P; GE Healthcare, 
Amersham, UK) using a wet transfer system, and membranes 
were incubated with one of the following primary antibodies: 
rabbit anti-GABAA α1 polyclonal antibody (diluted 1:2,000 in 
TBS containing 0.5% Tween 20; Abcam, Cambridge, UK); rab-
bit anti-GABAA β1 polyclonal antibody (diluted 1:2,500 in TBS 
containing 0.5% Tween 20); rabbit anti-GABAA γ3 polyclonal 
antibody (diluted 1:2,500 in TBS containing 0.5% Tween 20); 
rabbit anti-glutamic acid decarboxylase (GAD) polyclonal an-
tibody (diluted 1:2,000 in TBS containing 0.5% Tween 20); 
and β-actin antibody. Membranes were then washed and 
incubated with the horseradish peroxidase-conjugated goat 
anti-rabbit secondary antibody (diluted 1:3,000 in TBS con-
taining 0.5% Tween20). Immunoreactive bands were devel-
oped using a chemiluminescence detection kit (Roche Diag-
nostics, Mannheim, Germany) and quantitative analysis was 
performed by densitometric scanning. 

Statistical analysis
Sleep onset and duration data were analyzed using analy-

sis of variance (ANOVA). The Newman-Keuls test was used 
to perform intergroup comparisons. Values were expressed as 
means ± SEM, and statistical significance was accepted for p 
values <0.05. 
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RESULTS

Pretreatment with αS1-CH prolonged sleep duration in 
mice

It has been demonstrated αS1-casein hydrolysate protects 
rat from chronic mild stress-induced sleep disorders (Guesdon 
et al., 2006). In our preliminary experiment, αS1-CH showed an 
anxiolytic effect at relatively low doses (25, 50 mg/kg) in mice 
(data not shown). Therefore, we investigated whether αS1-CH 
improves sleep duration in pentobarbital-treated mice. Mice 
treated with αS1-CH in the dose range 30-240 mg/kg tended 
to have lower sleep-onset times (Fig. 1A). However, this effect 
of αS1-CH was not significant as compared with pentobarbital 
controls. Diazepam (1 mg/kg, i.p.) exhibited significantly ear-
lier sleep-onset times than that of control after pentobarbital 
treatment. One-way ANOVA showed significant differences 
in sleep induction between control and diazepam group [F 
(5,50)=5.0, p<0.01]. In contrast, the duration of sleep signifi-
cantly elevated when mice were treated with αS1-CH at higher 
doses (120 or 240 mg/kg, p.o.) [F (5,51)=15.02, p<0.01] (Fig. 
1B).

Rats pretreated with αS1-CH had fewer sleep-wake cycles
Sleep-wake cycle disruption has been associated with 

stress, which suggests that reducing the number of sleep-
wake cycles may provide relief from neurodegenerative dis-
eases (Cedernaes et al., 2017). Therefore, we investigated 
whether αS1-CH could reduce the number of sleep-wake cycle 
disruptions in rats. In the preliminary test, administration of 
αS1-CH at doses of 50 or 100 mg/kg did not significant affect 
sleep/wake cycles or EEG patterns in rats, and thus, the dose 
of αS1-CH was increased to 150 or 300 mg/kg. We found αS1-
CH at 300 mg/kg significantly reduced the number of sleep-
wake cycles by ~50% (Fig. 2). Furthermore, total time awake 
was reduced by αS1-CH pretreatment and total asleep was 
increased (Fig. 3). Although REM sleep was decreased and 
NREM sleep was increased after treatment with αS1-CH, no 
significant differences were found between treatment groups 
(Fig. 3).

The effect of αS1-CH on frequency bands of EEG during 
sleep-wake cycles

Protein αS1-CH (150 or 300 mg/kg, p.o.) was administered 
to rats once per day for 3 days. Wakefulness, REM sleep 
and NREM sleep were monitored using the power densities 
of delta (δ), theta (θ), and alpha (α) frequency bands in rats 
treated without or with αS1-CH (150 or 300 mg/kg). Whereas 
the percentage of θ power density was significantly increased 
by treatment with αS1-CH (300mg/kg) in sleep-wake cycles, δ 
frequency bands showed negligible differences. On the other 
hand, treatment with αS1-CH at 300 mg/kg decreased the per-
centage of α power density (Fig. 4).  

αS1-CH modulated the expression levels of β1 and γ3  
subtypes of GABAA receptor in the rat hypothalamus

GABAA receptor subtypes in neuronal tissue have been 
reported to be targets for insomnia treatment (Luppi et al., 
2017). We investigated whether the protein expressions of 
the GABAA receptor subunits α1, β1, and γ3 were modulated 
in the hypothalami of rats treated with αS1-CH. Treatment us-
ing αS1-CH at 150 mg/kg or 300 mg/kg increased the protein 
expression of β1, but the protein expression level of α1 and glu-
tamic acid decarboxylase (GAD65/67; catalyzes the formation of 
GABA in neuronal tissues) were unaltered (Fig. 5). Although 
the level of γ3 tended to be elevated by αS1-CH treatment, this 
was not statistically significant.
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Fig. 1. Effects of αs1-CH on the onset and duration of sleep in 
pentobarbital-treated mice. Mice were food-deprived for 12 h prior 
to being treated with αs1-CH (30-240 mg/kg) or diazepam (DZP, 
1mg/kg, i.p.). Sleep latency (A) and total sleeping time (B) were 
recorded for 120 min after injecting pentobarbital (42 mg/kg, i.p). 
Columns contain mean values and SEMs (n=8-10) as determined 
by ANOVA. Comparisons were made using the Newman-Keuls 
test. *p<0.05, **p-values of <0.01 were considered significant as 
compared with pentobarbital-treated controls.
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Fig. 2. Effects of αs1-CH on sleep-wake counts. αs1-CH (150, 
300 mg/kg) was orally administered to rats once daily for 3 days. 
Sleep-wake cycles were measured by EEG for 6 hrs and analyzed 
using Sleep Sign 2.1 software. Values were compared using the 
Newman-Keuls test. Column contain mean values and SEMs (n=5-
6). *p-values of <0.05 were considered significant as compared 
with naïve controls.
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Fig. 3. Differential effects of αs1-CH on sleeping stages in rats. 
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termined after administering αs1-CH (150, 300 mg/kg) orally to rats 
once daily for 3 days. Sleeping was determined using telemetric 
cortical EEG records and analyzed using Sleep Sign2.1 software. 
To compare each group versus naïve control, we used the New-
man-Keuls test. Columns represent mean values and SEMs (n=5-
6). *p<0.05 compared with naïve controls.
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DISCUSSION

Considering the importance of nutrition-based hypnosis 
over that of recently developed drugs with undesired side ef-
fects, our report on αS1-CH has merit with respect to prolonged 
duration of sleep, and fewer sleep-wake cycles, which sug-
gests a new avenue for developing alternative therapeutic op-
tions against the insomnia experienced during stressful con-
ditions. Sleep disorders are associated not only with mental 
problems (Yu et al., 2013) but are also linked to various health 
conditions, such as, metabolic disease and reduced testoster-
one levels accompanied by altered sexual behavior (Alvaren-
ga et al., 2015). Recently, a disordered protein architecture of 
receptors was suggested to be related to sleep problems (Tou 
and Chen, 2014), which implies a complex mechanism under-
lies insomnia. Several drugs that ameliorate insomnia have 
been developed, but many are associated with unwanted side 

effects (Kripke, 2016; Sirdifield et al., 2017). Alternative op-
tions have been sought, such as, acupuncture (Lee and Lim, 
2016) and the use of natural products (Shi et al., 2014). Milk 
contains a wide variety of bioactive peptides, including those 
in tryptic hydrolysate of αS1-casein, which has been reported 
to modulate the architecture of sleep (Dela Peña et al., 2016). 

Little is known of EEG band rhythms and membrane recep-
tor expressions in hypothalamic neurons, and EEG param-
eters are considered essential during sleep examinations and 
are used to evaluate sleep patterns or problems. Therefore, 
we investigated the effects of αS1-casein in mouse model of 
pentobarbital-induced sleep .

We found αS1-CH (30-240 mg/kg) did not modulate sleep 
onset, but that at 120 or 240 mg/kg it prolonged sleep duration 
in mice. Similarly, αS1-CH at 300 mg/kg reduced the number 
of sleep-wake counts nearly by a half in rats. Moreover, total 
sleeping time was increased but wakefulness was diminished 
by αS1-CH at 300 mg/kg. Together, these findings strongly 
support previous findings that suggested the tryptic hydroly-
sate of αS1-casein had sleep promoting properties. Pena et 
al. also showed that EEG δ waves increased in NREM sleep 
whereas α waves decreased (Dela Peña et al., 2016). In the 
present study, we also found the power density of θ waves 
were significantly increased and α densities significantly de-
creased by αS1-CH (300 mg/kg) in rats.  It has been known δ 
waves are slow waves related to the governance of sleep, and 
that α waves are high frequency waves related to sedatives 
and hypnotics (Stahl, 2008). Interestingly, it was reported that 
δ rhythm is predominantly seen during NREM sleep in con-
trast to θ rhythm, which is usually observed during REM sleep 
(Luppi et al., 2017). In general, in our EEG signals, θ waves 
were significantly enhanced during REM sleep, NREM sleep, 
and wakefulness when rats were treated with αS1-CH (300 mg/
kg), which indicates higher concentrations of αS1-CH influence 
EEG signals. In contrast to θ rhythms, α rhythms are present 
during waking (Doroshenkov et al., 2007), and in the pres-
ent study were found to be decreased by pretreatment with 
αS1-CH at higher concentration (300 mg/kg). This result may 
seem contradictory given the aforementioned EEG patterns of 
REM and NREM, and we cannot provide an explanation for 
this result. However, Rajaratnam et al. showed that melatonin 
administration does not significantly change δ or α activities 
in man (Rajaratnam et al., 2004), and suggested melatonin 
facilitates rather than induces sleep. This might also be the 
case for αS1-CH.

Despite controversies regarding the properties, functions, 
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and subunit arrangements of GABAA receptors, they have 
been established to be pentameric ligand-gated channels 
that negatively mediate neurotransmission in the central ner-
vous system, (Puthenkalam et al., 2016; Wongsamitkul et 
al., 2016). Dela Peña et al. (2016) suggested GABAA recep-
tor subunits play a role in mediating αS1-CH induced sleep-
ing based on results obtained using bicuculline, a competi-
tive GABAA receptor antagonist, and that the dose-dependent 
increase in chloride ion influx induced by αS1-CH in cultured 
human neuroblastoma cells was blocked by bicuculline. In the 
present study, we found the protein expression of the β1 recep-
tor subunit of GABAA was increased in the hypothalami of rats 
treated with αS1-CH (150, 300 mg/kg), but that α1 and GAD65/67 
protein levels were unchanged.   The activation of GAD plays 
an important role in the GABAergic system because GABA is 
generated from glutamate by the action of GAD. In the pres-
ent study, protein levels of GAD65/67 were unaltered by αS1-CH 
administration, suggesting αS1-CH might not modulate GABA 
generation. Nevertheless, our report indicates the importance 
of β1 subunits of GABAA receptor in αS1-CH enhanced sleep, 
though further studies are warranted on receptor subtypes 
and their arrangements in GABAA receptor (Mohler et al., 
2005; Wongsamitkul et al., 2016), especially since Liang and 
Marks (2014) observed the involvement of the GABAA γ

2 re-
ceptor subunit in REM sleep.

In the present study, we found αS1-CH significantly en-
hanced pentobarbital-induced sleep duration in mice, in-
creased total sleep, and EEG θ wave during sleep in rats. 
Given increased protein expressions of GABAA receptor β1 
subunits after αS1-CH treatment observed in rats, further work 
is required to explore other GABAA receptor subtypes and their 
arrangements to clearly delineate the sleep-enhancing effect 
of αS1-CH. Nonetheless, our findings suggest αS1-CH dietary 
supplementation could be deployed to treat sleep disorders.
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