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Abstract

Background

It has been reported that higher plasma 25-hydroxyvitamin D is associated with lower risk of

type 2 diabetes. However the results to date have been mixed and no adequate data based

on a cohort are available for the high end of the normal range, above approximately 32 ng/

ml or 80 nmol/L.

Methods

We performed a cohort study of 903 adults who were known to be free of diabetes or pre-

diabetes during a 1997–1999 visit to a NIH Lipid Research Centers clinic. Plasma 25(OH)D

was measured at Visit 8 in 1977–1979. The mean age was 74 years. The visit also included

fasting plasma glucose and oral glucose tolerance testing.

Follow-up continued through 2009.

Results

There were 47 cases of diabetes and 337 cases of pre-diabetes. Higher 25(OH)D concen-

trations (> 30 ng/ml) were associated with lower hazard ratios (HR) for diabetes: 30–39 ng/

ml or 75–98 nmol/L: HR = 0.31, 95% CI = 0.14–0.70; for 40–49 ng/ml or 100–122 nmol/L:

HR = 0.29, CI = 0.12–0.68; for > 50 ng/ml or 125 nmol/L: HR = 0.19, CI = 0.06–0.56. All HRs

are compared to < 30 ng/ml or 75 nmol/L. There was an inverse dose-response gradient

between 25(OH)D concentration and risk of diabetes with a p for trend of 0.005. Each 10 ng/

mL or 25 nmol/L higher 25(OH)D concentration was associated with a HR of 0.64, CI =

0.48–0.86. 25(OH)D concentrations were more weakly inversely associated with pre-diabe-

tes risk, and the trend was not significant.

Conclusion

Further research is needed on whether high 25(OH)D might prevent type 2 diabetes or tran-

sition of prediabetes to diabetes.
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Introduction

The public health impact of vitamin D deficiency has received attention due to the discovery

of associations between low plasma concentrations of vitamin D metabolites and higher risk of

several cancers, cardiovascular disease, bone fractures [1–3] and the metabolic syndrome [4].

Trends in energy intake and anthropometric characteristics have paralleled the increase in

incidence of type 2 diabetes mellitus. It is unclear whether vitamin D deficiency might be con-

tributing to increased risk [5].

If defining 25(OH)D levels < 32 ng/ml (< 80 nmol/L) as deficiency [6], 77% of U.S. adults

were deficient. The prevalence of vitamin D deficiency by this criterion has doubled since 1980

in U.S. adults [6].

Several cohort studies have examined the association of circulating 25(OH)D concentra-

tions with risk of diabetes. Of these, 12 found significantly higher incidence rates in individuals

with lower circulating 25(OH)D concentrations [5, 7–16]. The association in one was limited

to overweight subjects [16]; and the significant finding in another [14] was limited to women.

One study found a benefit of 25(OH)D� 11 ng/ml compared to< 11 ng/ml, but no further

benefit with higher concentrations [15]. Two studies reported a significant inverse association

in men, but not women [17, 18]. One study reported a favorable association that did not reach

statistical significance [19]. A study by Schafer et al. reported a statistically significant inverse

association between 25(OH)D and hazard ratio of diabetes after adjustment for age and clinic

location, but that was weak and no longer statistically significant after adjustment for more fac-

tors that included BMI [20].

The association of plasma 25(OH)D deficiency with risk of diabetes also has been examined

in four meta-analyses [11, 13, 21, 22], and all reported an inverse association of circulating 25

(OH)D with risk of diabetes.

The aim of this study was to examine whether lower concentrations of 25(OH)D or 1,25

(OH)2D were associated with higher incidence of diabetes and pre-diabetes in a prospective

cohort study with an overall follow-up period of 12 years.

This cohort may have a lower than usual prevalence of vitamin D deficiency due to year-

round sunshine and good weather in a sunny and clear area of southern California [23]. It

may also be possible that the cohort has a lower than usual prevalence of vitamin D deficiency

due to a higher standard of education and socioeconomic status and a high proportion of Cau-

casians. This cohort has the highest known published median 25(OH)D concentration, 42 ng/

ml or 105 nmol/L in men [24] and 39 ng/ml or 98 nmol/L in women [25] of any population

that has reported data on diabetes incidence by 25(OH)D. No previous study of the association

of 25(OH)D with diabetes has included a substantial population in the high range of> 30 ng/

ml or 75 nmol/L.

Methods

Participants

Participants were from the Rancho Bernardo Study, a population-based cohort of primarily

older, middle-income, community-dwelling Caucasian adults living in a southern California

suburb. They were subjects in a Lipid Research Clinics Prevalence Study consisting of a series

of visits. This was part of an NIH study of lipid-lowering agents established in 1972 [26]. The

individuals did not receive any medication, but rather served solely as an untreated compari-

son group. From 1997 to 1999, 1,098 surviving community-dwelling participants attended a

follow-up visit known as Visit 8. Of these, 1,080 received measurements of their plasma 25

(OH)D. Details of the inclusions are shown in the Supplementary Figure.

25(OH)D and diabetes
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We followed the cases until diagnosis of pre-diabetes or diabetes and non-cases until their

last test of 8-hour fasting plasma glucose (8-FPG) and oral glucose tolerance testing (OGTT).

Of the total participants, 52 had a history of diabetes and were excluded at baseline. Of the

remaining N = 1,028 participants, we first screened for diabetes using 8-FPG and excluded 60

participants with 8-FPG concentrations� 126 mg/dL or 7.0 mmol/L or had missing data on

8-FPG. We further excluded 65 with 2-hour OGTT > 200 mg/dL or 11.1 mmol/L.

Finally, a total of 903 participants were included in this study. Of these, 47 incident type 2

diabetes and 337 pre-diabetes cases were ascertained during 1997–2009. The multivariate anal-

yses included 46 diabetes cases and 337 pre-diabetes cases. The one fewer diabetes case was

due to missing data on covariates on one individual.

All willing participants were followed and are presently being followed, including the diabe-

tes and pre-diabetes cases. The follow-up rate through 2009 was 87%.

A flowchart in S1 Fig shows that no individual who was diabetic or pre-diabetic at baseline

in 1977–1979 was allowed to enter the cohort of N = 903 individuals who constituted this

study. As a result, the cohort was, to the standard of technology in 1977–1979 and WHO defi-

nitions of diabetes and pre-diabetes in international use, free of diabetes or pre-diabetes.

Individuals who developed diabetes during follow up were counted as incident cases to

determine the hazard rate. If an individual developed only pre-diabetes, he or she was counted

as a case of pre-diabetes, unless they later developed diabetes. If so, they were counted once, as

a case of diabetes, to avoid counting any individual more than once. The University of Califor-

nia, San Diego Human Subjects Protections Program approved this study, and all participants

gave written informed consent.

Data collection

During the 1997–1999 visit, participants completed standardized questionnaires that inquired

about myocardial infarction, stroke, angina pectoris, and peripheral claudication, current

medications, cigarette smoking, alcohol consumption, and physical exercise. Height and

weight were measured using a Lipid Research Clinics calibrated stadiometer and balance-

beam scale. Systolic and diastolic blood pressures were measured twice in seated subjects after

a 5-minute rest period, using the standard Hypertension Detection and Follow-up Program

protocol [27]. Body mass index was calculated as weight in kilograms / height in meters2. Use

of vitamin D and calcium supplements at baseline was determined using a questionnaire.

The primary exposure variables were plasma concentrations of 25(OH)D and 1,25(OH)2D.

Blood was obtained by venipuncture, after an overnight fast, and tubes were protected from

sunlight. Plasma was separated and stored at −70˚C within 30 minutes of collection. Plasma 25

(OH)D and 1,25(OH)2D concentrations were measured in the Holick-Chen Laboratory at

Boston University using vitamin D competitive binding protein recognition and chemilumi-

nescence detection (Stillwater MN, USA:Diasorin) [28]. To convert 25(OH)D from nano-

grams per milliliter to nanomoles per Liter, multiply nanograms/Liter times 2.5 [29].

The intra- and inter-assay coefficients of variation for the assay were 8% and 10%, respec-

tively [28] the limit of detection was 5 ng/mL or 13 nmol/L, and the reference range was 10–52

ng/mL or 25–130 nmol/L. For 1,25(OH)2D, the intra- and inter-assay coefficients of variation

were 5–10% and 10–15%, respectively; the limit of detection was 4.6 pg/mL or 12 pmol/L [28].

Case definition

Type 2 diabetes cases were defined by World Health Organization criteria of 1999 as

a� 8-hour FPG, or 8-FPG� 126 mg/dL or� 7.0 mmol/L and/or 2-hour oral glucose toler-

ance test, or 2-OGTT, of> 200 mg/dL or > 11.1 mmol/L. Pre-diabetes was defined as 8-FPG

25(OH)D and diabetes
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of 100–125 mg/dL, or 5.5–6.9 mmol/L; or 2-OGTT of 140–200 mg/dL, or 7.8–11.1 mmol/L

[30].

Blood specimens for 8-FPG were collected every 2 years, in all seasons. If the 8-FPG con-

centration ever was� 100 mg/dl or 5.5 mmol/L a 2-OGTT was performed. The measurement

of 25(OH)D in plasma was performed once, in 1997–1999. The cohort had been assembled

earlier, in 1972, and the participants were interviewed and examined, or completed question-

naires, every 2 years. There were 47 incident cases of diabetes and 337 incident cases of pre-

diabetes.

Statistical analysis

Plasma 25(OH)D categories of< 30, 30–39, 40–49 and� 50 ng/ml or < 75, 75–98, 100–122

and� 125 mmol/L are even multiples of 5 ng/ml, and were chosen for this analysis because

they are standard and readily understandable. Covariates other than gender were continuous,

including BMI, waist circumference, plasma high density lipoprotein and triglyceride concen-

trations. One covariate, calcium supplementation, was entered as a dichotomous covariate,

because further detail was not available. Intake of vitamin D supplements could not be used as

a covariate in the regression model since every participant who took a vitamin D supplement

also took a calcium supplement.

Chi-square tests for categorical variables and t-tests for continuous variables were used to

identify differences between participants who developed diabetes or pre-diabetes compared to

those who did not. Cox proportional hazards models were used to determine hazard ratios

(HRs) and 95% confidence intervals [31] for categories of 25(OH)D and 1,25(OH)2D, with

adjustment for six covariates, including sex, calcium supplement use, body mass index, waist

circumference, plasma high-density lipoprotein cholesterol, and triglyceride concentrations.

These were all continuous scales at baseline.

Covariates for multivariate analyses were chosen using backward multivariate logistic

regression including all significant variables (p< 0.05) with all exposure variables. Waist cir-

cumferences and calcium supplementation were selected as significant covariates. Plasma con-

centrations of 25(OH)D and 1,25(OH)2D had skewed distributions, so they were entered in

multivariate models as categorical variables. Heterogeneity was evaluated by the Cochran Q

test [31].

For a sensitivity analysis of whether the association of plasma 25(OH)D with diabetes was

explained by traditional, widely accepted diabetes risk factors, four additional analyses were

performed using risk scores for propensity to develop diabetes that were calculated using algo-

rithms developed by the Centers for Disease Control and Prevention based on NHANES-III

Third National Health and Nutrition Examination Survey data [32] and ARIC, the Atheroscle-

rosis Risk in Communities study [33].

These scores were used to adjust the hazard rates for diabetes risk factors including age,

waist circumference, history of gestational diabetes, family history of diabetes, weight, height,

blood pressure, and regular exercise for the NHANES-III risk score [32]; and age, sex, race,

hypertension, smoking history, resting pulse, parental history of diabetes, height, weight and

waist circumference for the ARIC risk score [33].

Subgroup analyses stratified for the presence of hyperparathyroidism, regular strenuous

exercise, metabolic syndrome, and high vs. low diabetes risk score according to the NHANE-

S-III and ARIC algorithms were performed to identify any effect modifiers of the association

between vitamin D metabolite concentrations and diabetes risk. All p-values were two-tailed.

All analyses were conducted using SAS Version 9.2 (SAS Institute, Cary, NC). Anonymized

data are in S1 Table.

25(OH)D and diabetes
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Results

Results according to continuous variable at baseline are shown in Table 1. Median follow-up

time until diagnosis of diabetes or pre-diabetes was as follows: 4.5 years for diabetes cases; 4.1

years for pre-diabetes cases; and 12.5 years for the total cohort. Range of age of the cohort at

baseline was 38–97 years, with a mean of 74 years. Body mass index, waist circumference, fast-

ing plasma glucose, triglyceride concentrations and systolic blood pressure were higher in

individuals who became cases of diabetes during the follow-up period than in those who did

not, as shown in Table 1.

Use of vitamin D and calcium supplements at baseline was lower in individuals who

became diabetes cases than in those who did not. Plasma HDL-cholesterol concentration at

baseline was lower in individuals who became diabetes or pre-diabetes cases than in those who

did not develop diabetes.

Results according to discrete variables at baseline are shown in Table 2. Males constituted

70% of diabetes cases but only 49% of pre-diabetes cases. Alcohol use, smoking, and self-

reported regular strenuous exercise were not significantly associated with incidence of diabetes

or pre-diabetes, but there was a borderline adverse trend of higher alcohol use by cases of pre-

diabetes.

Use of calcium supplements at baseline was associated with lower risk of diabetes

(p< 0.05). There was a borderline trend linking use of vitamin D supplements at baseline with

lower incidence of diabetes (p = 0.06).

As shown in Table 3, a plasma 25(OH)D concentrations > 30 ng/ml or 75 nmol/L was asso-

ciated with approximately 70% lower incidence of diabetes compared with< 30 ng/ml or 75

nmol/L at baseline. A concentration of 30–39 ng/ml or 75–99 nmol/L was associated with

HR = 0.31 and 40–49 ng/ml or 100–124 nmol/L was associated with HR = 0.29 as shown in

Table 1. Baseline characteristics of diabetes cases, pre-diabetes cases and non-cases in the Rancho Bernardo cohort, 1997–1999.

Diabetes Pre-diabetes

Cohort

(n = 903)

Non-cases (n = 856) Cases

(n = 47)a
Non-cases

(n = 519)

Cases

(n = 349)

Mean (SE) Mean (SE) Mean (SE) p-valueb Mean (SE) Mean (SE) p-valueb

Age (years) 74.1 (0.3) 74.2 (0.4) 73.7 (1.2) 0.768 73.7 (0.5) 74.8 (0.5) 0.124

Fasting blood sugar (mg/dl) 99.3 (0.4) 97.9 (0.3) 126.5 (2.8) <0.001 92.6 (5.2) 106.1 (0.4) <0.001

BMI (Kg/m2) 25.4 (0.1) 25.2 (0.1) 29.1 (0.8) <0.001 24.4 (0.1) 26.4 (0.2) <0.001

Waist circumference (cm) 85.1 (0.4) 84.4 (0.4) 97.9 (2.0) <0.001 81.3 (0.5) 89.6 (0.7) <0.001

Triglycerides (mg/dl) 121.9 (2.6) 117.3 (2.1) 206.8 (28.8) 0.003 112.1 (2.5) 126.7 (3.5) <0.001

HDL (mg/dl) 61.1 (0.6) 61.9 (0.6) 45.5 (2.0) <0.001 64.6 (0.8) 57.3 (1.0) <0.001

Systolic blood pressure (mmHg) 135.1 (0.7) 134.8 (0.7) 141.2 (3.0) 0.040 134.6 (1.0) 135.3 (1.0) 0.624

Diastolic blood pressure(mmHg) 74.0 (0.3) 73.9 (0.3) 75.5 (1.3) 0.267 73.7 (0.4) 74.4 (0.5) 0.285

25(OH)D (ng/ml) 41.9 (0.5) 42.2 (0.5) 36.9 (1.6) 0.002 42.7 (0.7) 41.4 (0.7) 0.191

(nmol/L) 104.7 (1.2) 105.4 (1.2) 92.3 (3.9) 0.002 106.7 (1.6) 103.4 (1.9) 0.191

1,25(OH)2D (pg/ml) 31.7 (0.6) 31.7(0.6) 31.9(0.6) 0.955 32.2(0.8) 30.9(0.9) 0.274

(pmol/L) 76.2 (1.4) 76.1 (1.4) 76.4 (5.2) 0.955 77.4 (1.9) 74.2 (2.2) 0.274

Follow-up (years)c 12.5 (3.3) 12.6 (2.7) 4.5 (5.4) <0.001 10.1 (8.4) 4.5 (1.6) <0.001

a. These 47 cases included 35 whose diabetes was diagnosed without any prior diagnosis of pre-diabetes. Those with a prior diagnosis of pre-diabetes were not counted as

pre-diabetes cases, in order to avoid counting any individual more than once.
b. P-values are from t-tests for continuous variables and chi-square tests for categorical variables.
c. For follow-up years, values shown are medians and interquartile ranges.

https://doi.org/10.1371/journal.pone.0193070.t001
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Table 2. Baseline characteristics of non-cases, type 2 diabetes mellitus cases and pre-diabetes cases in the Rancho Bernardo cohort, discrete variables, 1997–1999.

Diabetes Pre-diabetes

Cohort

(n = 903)

Non-cases (n = 856) Cases

(n = 47)a
Non-cases

(n = 519)

Cases

(n = 349)

N (%) N (%) N (%) p-valueb N (%) N (%) p-valueb

Male 340 (37.7) 307 (35.9) 33 (70.2) <0.001 146 (28.1) 171 (49.0) <0.001

Current alcohol drinking 452 (50.1) 427 (49.9) 25 (53.2) 0.659 246 (47.4) 185 (53.0) 0.105

Ever smoking 492 (54.5) 463 (54.1) 29 (61.7) 0.308 272 (52.4) 199 (57.0) 0.181

Regular strenuous exercise 193 (21.4) 182 (21.3) 11 (23.4) 0.727 110 (21.2) 74 (21.2) 0.998

Calcium supplement use 416 (46.1) 401 (46.9) 15 (31.9) 0.045 271 (52.2) 132 (37.9) <0.001

Vitamin D supplement use 203 (22.5) 199 (23.3) 4 (8.5) 0.018 31 (25.2) 69 (19.8) 0.064

a. These 47 cases included 35 whose diabetes was diagnosed without any prior diagnosis of pre-diabetes. Those with a prior diagnosis of pre-diabetes were not counted as

pre-diabetes cases, in order to avoid counting any individual more than once.
b. P-values are from chi-squared tests.

https://doi.org/10.1371/journal.pone.0193070.t002

Table 3. Hazard ratios with 95% confidence intervals of type 2 diabetes mellitus (DM) incidence by categories of plasma vitamin D metabolite concentrations in

the Rancho Bernardo cohort, 1997–1999.

Plasma metabolite

concentration

Person-years of

cohort

No. who developed type 2

diabetes

(n = 46) a

HR (95% CI) b Person-years of

cohort

No. who developed pre-

diabetes

(n = 346) a

HR (95% CI) b

25(OH)D (ng/ml) c, f

< 30 1,331 13 1.00 886 52 1.00

30–39 3,401 13 0.31 (0.14–0.70) 2,621 112 0.75 (0.54–1.05)

40–49 3,465 14 0.29 (0.12–0.68) e 2,529 122 0.88 (0.63–1.24) e

� 50 2,199 6 0.19 (0.06–0.56) e 1,728 60 0.66 (0.45–0.97) e

p-trend 0.005 0.173

< 30 1,331 13 1.00 886 52 1.00

� 30 9,065 33 0.27 (0.13–0.56) e 6,876 294 0.78 (0.57–1.07) e

1,25(OH)2D (pg/ml) d, g

< 20 2,054 7 1.00 1,522 72 1.00

20–29 3,096 20 1.46 (0.61–3.52) 2,237 115 1.01 (0.75–1.36)

30–39 2,657 9 0.94 (0.35–2.57) 1,996 82 0.87 (0.63–1.20)

� 40 2,590 10 1.13 (0.42–3.05) 2,010 77 0.81 (0.59–1.13)

p-trend 0.781 0.120

< 30 5,150 27 1.00 3,759 187 1.00

� 30 5,247 19 0.79 (0.43–1.43) 4,005 159 0.84 (0.68–1.04)

25(OH)D, plasma 25 hydroxyvitamin D; 1,25(OH)2D, plasma 1,25 dihydroxyvitamin D
a. 46 diabetes cases and 337 pre-diabetes cases were included in the multivariate analyses, with the difference due to a case of diabetes with missing covariates.
b. Adjusted for sex, body mass index, waist circumference, calcium supplement intake, plasma triglycerides and HDL-cholesterol.
c. 25(OH)D conversions: 30 ng/ml = 75 nmol/L; 40 ng/ml = 100 nmol/L; 50 ng/ml = 125 nmol/L;
d. 1,25(OH)2D conversions: 20 pg/ml = 48 pmol/L; 30 pg/ml = 72 pmol/L; 40 pg/ml = 96 pmol/L.
e. There was significant heterogeneity between two hazard ratios on diabetes and pre-diabetes (P = 0.025 for ‘40–49 ng/mL’; P = 0.039 for ‘� 50 ng/mL’; and P = 0.009

for ‘30+ ng/mL’)
f. The number of participants in each category of 25-hydroxyvitamin D was 116, 295, 301 and 191, respectively, from lowest to highest category of 25(OH)D.
g. The number of participants in each category of 1,25-dihydroxyvitamin D was 87, 220, 225, 143 and 191, respectively, from lowest to highest category of 1,25(OH)2D.

https://doi.org/10.1371/journal.pone.0193070.t003
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Fig 1. Hazard ratios were progressively lower in each stratum from the lowest 25(OH)D con-

centration of� 30 ng/ml or 75 nmol/L to the highest, of� 50 ng/ml or 125 nmol/L. The high-

est levels of 25(OH)D had an 81% lower incidence rate of diabetes, or HR = 0.19. Each 10 ng/

ml or 25 nmol/L higher 25(OH)D was associated with a HR = 0.64.

The association of 25(OH)D with pre-diabetes was weak compared to that with diabetes

(Fig 2). For 40–49 ng/ml or 100–124 nmol/L, the p-heterogeneity was 0.025 between the two

HRs in diabetes and pre-diabetes risk; for > 50 ng/ml or 125 nmol/L, p-heterogeneity was

0.039. 25(OH)D concentrations > 50 ng/ml or 125 nmol/L were significantly associated with

lower incidence of pre-diabetes. The HR was 0.66.

There were N = 241 deaths of participants, leaving N = 662 alive through the end of the fol-

low-up period. The mean 25(OH)D concentration in those who died was 38.9 ng/ml, or 97.3

nmol/L. The mean in those who lived was 43.0 ng/ml, or 107.5 nmol/L.

An analysis was performed of the inverse association between serum 25(OH)D and hazard

ratios for diabetes according to whether the individual was taking a calcium supplement at

baseline, as shown in Table 4. This revealed that the association between 25(OH)D and risk of

diabetes may have been slightly stronger in participants who took calcium supplements at

baseline. In those who took supplements, there was a hazard ratio of 0.55 with 95% CI of 0.31–

0.99 for each 10 ng/ml or 25 nmol/L increase in serum 25(OH)D. By contrast, in participants

who took no calcium at baseline, the hazard ratio was 0.69 with 95% CI 0.49–0.98 for each 10

ng/ml or 25 nmol/L increase in serum 25(OH)D. The slightly lower hazard ratio suggests that

calcium might enhance the effect of 25(OH)D, but the difference according to calcium supple-

ment use was not statistically significant. The association of plasma 25(OH)D with risk of dia-

betes persisted after exclusion of individuals taking calcium and/or vitamin D supplements.

Fig 1. Hazard ratio for type 2 diabetes according to plasma 25(OH)D concentration at baseline, Rancho Bernardo

CA, 1997–2009.

https://doi.org/10.1371/journal.pone.0193070.g001
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Fig 2. Hazard ratio for pre-diabetes according to plasma 25(OH)D concentration at baseline, Rancho Bernardo

CA, 1997–2009.

https://doi.org/10.1371/journal.pone.0193070.g002

Table 4. Hazard ratios with 95% confidence intervals of type 2 diabetes incidence by categories of plasma vitamin D metabolite concentrations by use of calcium

supplements, Rancho Bernardo cohort, 1997–2009.

Plasma metabolite concentration Person-years of cohort No. who developed type 2 DM HR (95% CI) a Person-years of cohort No. who developed PreDM HR (95% CI) a

25(OH)D (ng/ml) With calcium supplementation Without calcium supplementation

< 30 ng/mL 892 10 1.00 580 36 1.00

30–39 1,920 11 0.37 (0.15–0.96) 1,389 79 0.87 (0.58–1.31)

40–49 1,657 6 0.32 (0.11–0.95) b 1,151 67 0.99 (0.65–1.53) b

� 50 1,008 4 0.20 (0.05–0.83) b 743 33 0.71 (0.44–1.17) b

p-trend 0.027 0.398

< 30 892 10 1.00 580 36 1.00

30+ 4,585 21 0.33 (0.14–0.78) b 3,283 179 0.88 (0.60–1.28) b

1,25(OH)2D (pg/ml) With calcium supplementation Without calcium supplementation

< 30 ng/mL 1,248 13 1.00 815 50 1.00

30–39 2,600 12 0.33 (0.14–0.76) 1,989 90 0.72 (0.50–1.02)

40–49 2,571 11 0.28 (0.11–0.72) 1,853 93 0.88 (0.61–1.27)

� 50 1,565 6 0.23 (0.08–0.70) c 1,204 44 0.62 (0.40–0.94) c

p-trend 0.004 0.192

< 30 1,248 13 1.00 815 50 1.00

30+ 6,736 29 0.30 (0.14–0.63) c 5,046 227 0.75 (0.54–1.04) c

a. Adjusted for sex, body mass index, waist circumference, calcium supplement intake and blood levels of triglyceride and HDL-cholesterol
b. There was significant heterogeneity between two hazard ratios on diabetes and pre-diabetes (P = 0.056 for ‘40–49 ng/mL’; P = 0.095 for ‘� 50 ng/mL’; P = 0.041 for ‘30

+ ng/mL’)
c. There was significant heterogeneity between two hazard ratios on diabetes and pre-diabetes (P = 0.095 for ‘� 40 ng/mL’; P = 0.029 for ‘30+ ng/mL’)

https://doi.org/10.1371/journal.pone.0193070.t004
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Regarding multiple regression analyses of the associations of vitamin D supplements vs. cal-

cium supplements, it was not possible to absolutely separate the association of vitamin D sup-

plementation compared to the association with calcium supplementation. This was because all

individuals who took vitamin D supplements also took calcium.

As shown in Table 5, the association of low 25(OH)D with high incidence of diabetes per-

sisted after adjustment for NHANES-III and ARIC diabetes risk scores. The association of low

25(OH)D with high risk of diabetes also persisted after stratification for PTH level, regular

strenuous exercise, and metabolic syndrome (Table 6).

The inverse association of 25(OH)D with diabetes was stronger in individuals with hyper-

parathyroidism or who exercised regularly (p- heterogeneity = 0.006 and 0.046, respectively)

(Table 5). Among those with hyperparathyroidism, those with 25(OH)D > 30 ng/ml had

lower risk of diabetes (HR = 0.06, 95% CI 0.02–0.25). Among those reporting no exercise,

those with 25(OH)D > 30 ng/ml also had lower risk (HR = 0.35, 95% CI 0.16–0.80). The asso-

ciation of 25(OH)D > 30 ng/ml with diabetes persisted despite metabolic syndrome or high

NHANES III or CDC risk scores (HR = 0.42, 95% CI 0.17–1.00; HR = 0.33 95% CI 0.13–0.84;

and HR = 0.39 95% CI = 0.18–0.85, respectively.

Plasma 1,25(OH)2D concentrations were not associated with incidence of diabetes or pre-

diabetes (Table 3). Graphs are available from the authors.

Discussion

Individuals with a 25(OH)D concentration > 30 ng/ml or 75 nmol/L had only one-third the

incidence of diabetes as those with� 30 ng/ml or 75 nmol/L. Those with a somewhat higher

concentration of 25(OH)D > 50 ng/ml or 125 nmol/L had a much lower HR of 0.2.

The association of 25(OH)D with diabetes persisted after exclusion of participants who

reported at baseline that they usually took vitamin D or calcium supplements. The inverse

association of a higher 25(OH)D concentration� 30 ng/ml or 75 nmol/L was consistent

among individuals in higher traditional risk groups for diabetes such as those having metabolic

syndrome or established diabetes risk factors according to standard scores for predicting risk

Table 5. Hazard ratios with 95% confidence intervals of type 2 diabetes incidence by categories of plasma 25(OH)D concentration adjusted for different combina-

tions of confounding factors for diabetes, Rancho Bernardo cohort, 1997–2009.

Risk for diabetes Risk for pre-diabetes

Plasma metabolite concentration HR (95% CI)b HR (95% CI)c HR (95% CI)d HR (95% CI)b HR (95% CI)c HR (95% CI)d

25(OH)D (ng/ml) a

< 30 1.00 1.00 1.00 1.00 1.00 1.00

30–39 0.31 (0.14–0.70) 0.43 (0.20–0.93) 0.44 (0.20–0.95) 0.75 (0.54–1.05) 0.78 (0.56–1.08) 0.78 (0.56–1.08)

40–49 0.29 (0.12–0.68) 0.46 (0.22–0.99) 0.47 (0.22–1.00) 0.88 (0.63–1.24) 0.94 (0.68–1.30) 0.92 (0.66–1.27)

� 50 0.19 (0.06–0.56) 0.38 (0.15–0.96) 0.36 (0.14–0.90) 0.66 (0.45–0.97) 0.68 (0.47–0.99) 0.64 (0.45–0.93)

a. 25(OH)D conversions: 30 ng/ml = 75 nmol/L; 40 ng/ml = 100 nmol/L; 50 ng/ml = 125 nmol/L
b. Adjusted for sex, body mass index, waist circumference, calcium supplement intake and blood levels of triglyceride and HDL-cholesterol.
c. Adjusted for the NHANES-III diabetes risk scores. The NHANES-III (the Third National Health and Nutrition Examination Survey) diabetes risk score was developed

on the basis of a questionnaire including information on age, waist circumference, gestational diabetes, family history of diabetes, weight and height, blood pressure and

exercise (33)
d. Adjusted for the CDC ARIC DM risk score. The CDC ARIC (Atherosclerosis Risk in Communities [ARIC] study in United States Centers for Disease Control and

Prevention) DM risk score was based on questionnaire plus blood information such as age, sex, race, hypertension, smoking history, resting pulse, parental history of

DM and anthropometric characteristics such as height, waist, and weight from questionnaire and plasma glucose, triglyceride, HDL cholesterol and uric acid in fasting

state (32)

https://doi.org/10.1371/journal.pone.0193070.t005
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of diabetes that are used by CDC and other organizations to predict incidence of diabetes.

These include obesity and lack of regular exercise.

The finding of the present study that 25(OH)D concentration had a significantly inverse

association with risk of diabetes is biologically plausible. Mice with the vitamin D receptor

(VDR) null phenotype have higher incidence rates of diabetes [34], suggesting that the vitamin

D pathway may be relevant to the pathogenesis of diabetes. Pancreatic beta cells have VDR,

and vitamin D metabolites stimulate the pancreas to produce insulin [35].

Active metabolites of vitamin D also have been shown in animal models to protect pancre-

atic beta cells from cytokine-induced inflammation and apoptosis [34].

Only the 25(OH)D concentration was associated with lower risk of diabetes in the present

study. One of the reasons may be the stability of 25(OH)D in circulation. 25(OH)D has a

75-fold longer half-life than 1,25(OH)2D [36]. Circulating 25(OH)D is also stable with respect

to time, even in stored frozen plasma [37].

Although the number of cases of diabetes was much smaller than that of pre-diabetes, 25

(OH)D levels were strongly inversely associated with risk of diabetes and weakly inversely

associated with risk of pre-diabetes. This could be because pre-diabetes is a relatively mild con-

dition, and includes many individuals who did not become diabetic.

Another possible reason is that people with pre-diabetes may be healthier due to better life-

style behaviors. In our study, pre-diabetes participants were more likely to use vitamin D sup-

plements and had higher HDL-cholesterol levels, lower triglyceride levels, BMI, and waist cir-

cumference, and were less likely to smoke cigarettes compared to diabetes patients.

The inverse association of 25(OH)D with diabetes was much stronger in individuals

with hyperparathyroidism and who regularly exercised strenuously as shown in Table 5.

Hyperparathyroidism, regardless of cause, is a common concern in the aged, particularly in

women, due to renal deterioration, low estrogen, low calcium intake, and, on occasion, use of

Table 6. Hazard ratios with 95% confidence intervals of type 2 diabetes mellitus (DM) incidence by plasma 25(OH)D levels after stratification for PTH levels, regu-

lar strenuous exercise, metabolic syndrome, and DM risk scores.

Plasma metabolite

concentration

Person-years of

cohort

No. who developed type 2

DM

HR (95% CI) b Person-years of

cohort

No. who developed type 2

DM

HR (95% CI) b P-heterogeneity c

25(OH)D (ng/ml) a Normal range of PTH (PTH<60 pg/mL) Hyperparathyroidism (PTH � 60 pg/mL)

< 30 814 3 1.00 517 10 1.00

� 30 7,160 27 0.73 (0.21–2.54) 1,905 6 0.06 (0.02–0.25) 0.006

No regular strenuous exercise Regular strenuous exercise

< 30 1,197 11 1.00 143 2 1.00

� 30 6,881 24 0.35 (0.16–0.80) 2,219 9 0.02 (0.002–0.20) 0.046

No metabolic syndrome Metabolic syndrome

< 30 831 3 1.00 509 10 1.00

� 30 6,978 12 0.21 (0.05–0.87) 2,122 22 0.42 (0.17–1.00) 0.419

Low NHANES-III DM risk scores < Median High NHANES-III DM risk scores �Median

< 30 654 4 1.00 686 9 1.00

� 30 5,465 12 0.17 (0.05–0.61) 3,635 22 0.33 (0.13–0.84) 0.405

Low CDC ARIC DM risk scores < Median High CDC ARIC DM risk scores �Median

< 30 446 2 1.00 894 11 1.00

� 30 4,076 5 0.05 (0.01–0.51) 5,024 29 0.35 (0.16–0.78) 0.058

a. 25(OH)D conversions: 30 ng/mL = 75 nmol/L; 40 ng/mL = 100 nmol/L; 50 ng/mL = 125 nmol/L.
b. Adjusted for sex, body mass index, waist circumference, calcium supplement intake and plasma levels of triglyceride and HDL-cholesterol
c. P-heterogeneity between the two HRs in the two strata.

https://doi.org/10.1371/journal.pone.0193070.t006
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furosemide [38, 39]. It is also adversely associated with glucose tolerance and insulin resistance

[40, 41].

In our cohort, individuals with hyperparathyroidism were likely to have higher risk for dia-

betes as shown in Table 5. Nevertheless, our finding that a higher 25(OH)D concentration has

a beneficial effect on risk of diabetes is encouraging to older people. The beneficial effect of

higher 25(OH)D could be due to improving insulin sensitivity and anti-inflammatory effects

[40, 41[40,41] although the exact mechanisms by which a higher 25(OH)D concentration low-

ers diabetes risk remain unclear.

Individuals who were doing regular strenuous exercise were likely to have a lower HR asso-

ciated with higher 25(OH)D concentration (Table 6). A similar association was present in

those with higher levels of PTH (Table 6). Skeletal muscle has VDR [42]. Strenuous exercise

itself has a favorable effect in controlling diabetes through increasing glucose utilization in

muscle and insulin sensitivity [43].

Limitations

The present study has several limitations. The study participants were relatively healthy middle

to upper-middle class Caucasians, who had good access to health care. As a result, our findings

may not be generalizable to other populations.

Rancho Bernardo, located 16 miles north of San Diego, CA, has sunny weather throughout

the year. This natural environment helps the participants maintain higher 25(OH)D concen-

trations in blood without vitamin D supplementation. Previous studies have shown that 95%

of 25(OH)D is a product of photosynthesis of vitamin D3 in the skin [44], and it is probable

that there is more sunlight reaching the members of this community than members of previ-

ously studied communities.

Generalizability with certainty to areas less sunny than southern California could be exam-

ined by repeating the study. However, an association in the same direction as found in this

study was present in another cohort whose members lived throughout the U.S. [45], although

the association was not found in another cohort [46]. The present study will help resolve the

question of whether the association is present in men and in older women.

It is also possible that the higher concentrations observed in this study might have been due

to differences in laboratory assay techniques. The competitive binding protein assay may pro-

duce higher 25(OH)D results compared with radioimmunoassay and high-performance liquid

chromatography [36, 47]. Concentrations of 25(OH)D and 1,25(OH)2D found in the Rancho

Bernardo cohort may not be directly comparable to those in studies using different assays.

On the other hand, routine assays accurately rank individuals across the range of 25(OH)D

levels [36], suggesting internal validity. Values for 25(OH)D were measured on a single

blood specimen, but are known to have seasonal variation [48]; this may have weakened the

observed association between these measures and incidence of diabetes. Nearly all other stud-

ies showing an association between 25(OH)D concentration and diabetes have also used a sin-

gle measurement.

Comparison of the present study with a recent well-designed multi-center cohort study by

Schafer et al. [20] of 25(OH)D and risk of diabetes in older adults is useful. The study by Scha-

fer et al., in contrast to the present study, did not report the existence of an association of

plasma 25(OH)D with risk of diabetes. It would be of value to try to explain the differences

between that study and this one that might account for the differences in results.

Both studies used approximately the same well-established and highly respected cohort

study design. The difference is unlikely to be merely a matter of a deficiency in basic study

design. Both studies were performed by highly experienced research teams. Both studies ruled
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out the existence of diabetes at baseline. Both used well-regarded statistical methods, such as t-
tests, chi-square tests and Cox proportional hazards regression. Both used either stratification

and/or multiple regression to control for confounding.

There were more similarities between these studies than differences, but there were a few

differences that may be instructive. One is that the study by Schafer et al. was conducted at 4

centers located mainly in the Northern and mid-Atlantic tiers of the US: Minneapolis, Pitts-

burgh, Baltimore, and Portland OR. These studies had a median latitude of 43 degrees N. This

can be compared with the 33 degrees N latitude of Rancho Bernardo. Winter conditions can

be harsh in these four areas, but winters in Rancho Bernardo are extremely mild. The mean 25

(OH)D concentration was 23 ng/ml or 58 nmol/L in the Schafer et al. study, compared to 42

ng/ml or 105 nmol/L in the present study. It might be that the 25(OH)D concentrations in the

subjects in the previous study tended to be in a range that is below the range in which 25(OH)

D is inversely related to incidence of diabetes.

The present Rancho Bernardo cohort has the highest median 25(OH)D of any cohort study

to date. This suggests a chance that there may be a threshold in the dose-response curve

between 25(OH)D and incidence of diabetes. If a threshold for benefit from higher 25(OH)D

exists, the present study suggests that it may be at about 30 ng/ml or 75 nmol/L. Thresholds

are common features of dose-response curves [11]. Substantial numbers of subjects with

serum 25(OH)D > 30 ng/ml or 75 nmol/L were not present in any cohorts previously studied,

but were present in the Rancho Bernardo cohort.

Finally, an inverse association of 25(OH)D with risk of diabetes that was identified in the

study by Schafer et al. lost its statistical significance after adjustment for BMI and other covari-

ates. This adjustment is logical if BMI itself is the adverse factor. But if BMI happens to be a

link in a possible causal chain from obesity to lower 25(OH)D to incidence of diabetes, the

adjustment may have at least partially washed out the association that was found in the age-

and clinic location-adjusted data in that study.

Based on the above contrasts between well-designed cohort studies such as that of Schafer

et al. [20] and the present study, it is evident that more research is needed to delineate the con-

tributory roles of BMI per se and of 25(OH)D to risk of diabetes. Such contributory roles may

not be mutually exclusive, and the results of both studies could possibly be accurate. Meta-

analyses may help provide context for understanding the diversity of findings of studies such

as these [11, 13, 21, 22].

Strengths

On the other hand, the present study has several strengths. The standard A. B. Hill criteria for

causality in observational studies [49] were applied to the results of the present study, and the

association of higher plasma 25(OH)D with lower risk of diabetes met most of the Hill criteria.

The study was a prospective cohort study of individuals who were healthy volunteers when

they enrolled, but developed diabetes during the study. The cohort study tends to have lower

risk of reverse causation than a case-control study. Even when the hazard ratios were adjusted

using regression and standard risk scoring systems for classical risk factors for diabetes, the

findings persisted and remained similar in strength.

The results of this study suggest that targeting a plasma 25(OH)D concentration in the

range of 50 ng/ml or 125 nmol/L might be useful in attempting to reduce the incidence rate of

diabetes. However, it is thought by some workers that there may be an unknown degree of risk

associated with maintaining 25(OH)D in this range. The main possible risk is one of hypercal-

cemia [50]. Another could be the chance of a higher risk of ischemic heart disease [50]. Results
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regarding whether such a risk exists have been mixed [50]. There have been no known reports

of complications of vitamin D supplementation or high plasma 25(OH)D in our cohort.

There are still unresolved concerns about the desirable plasma target for 25(OH)D. At this

moment, the authors would tentatively suggest that the target be no less than 40 ng/ml or 100

nmol/L. Other analysts considering the same data could reasonably choose other desired tar-

gets, such as 30 ng/ml or 75 nmol/L proposed by the Endocrine Society [51].

In conclusion, the higher plasma 25(OH)D concentrations of� 50 ng/ml or 125 nmol/L in

this cohort were independently associated with 80% lower incidence rates of diabetes. How-

ever, a target threshold of 50 ng/ml or 125 nmol/L is considerably above that recently recom-

mended by an expert consensus panel that considered all known benefits and risks of vitamin

D, and suggested instead a threshold of 30 ng/ml or 75 nmol/L [51]. As a result the possibility

of a threshold higher than 30 ng/ml or 75 nmol/L should be approached with caution, pending

replication of the findings [50].

Our study does not solve the basic question of whether individuals may need to seek vita-

min D supplementation if needed to maintain a concentration of 30 ng/ml or 75 nmol/L,

despite the possibility of any toxicity. A recent placebo-controlled randomized trial of a vita-

min D weekly bolus supplement for pre-diabetes patients failed to prove a beneficial effect on

5-year incidence of diabetes [52]. Sufficient 25(OH)D levels obtained naturally from sunlight

and food, not supplementation, might be more relevant than supplementation to reduce risk

of diabetes. Larger cohort studies or long-term clinical trials would be desirable to help con-

firm whether this association is causal.

This study used a single measurement of 25(OH)D during a longitudinal study, since no

other measurements were available. These measurements may have been more representative

of serum levels during the 12.5 years of follow-up if two or more measurements had been

made. The single measurement would have been of greatest concern if the study had found

no association, since the absence of an association could have been due to use of a single

measurement.

However an inverse association of 25(OH)D with incidence of diabetes was detected in this

study despite the use of a single baseline measurement. It is possible that more associations

could have been detected if there were more measurements of 25(OH)D during follow-up. On

the other hand, 25(OH)D concentrations tend to be somewhat stable over time in adults [3].

The question of stability of season-specific 25(OH)D concentrations in adults over periods of

5 years or longer should be further studied in cohorts that have used multiple measurements

during follow-up [3].

Both major metabolites of vitamin D were studied to determine whether an association was

present for both. Only a low concentration of 25(OH)D is usually associated with diseases that

are due to vitamin D-deficiency [1]. However the authors measured the 1,25(OH)2D concen-

tration to confirm that the association was only for 25(OH)D and not present for 1,25(OH)2D.

1,25(OH)2D is tightly homeostatically regulated, and typically does not vary greatly among

individuals [1, 29].

Serum 25(OH)D is generally accepted as the standard measure of vitamin D nutrition [1].

Most tissues can enzymatically convert it to 1,25(OH)2D [1]. In retrospect, measurement of 25

(OH)D alone would have been adequate to test for an inverse association between vitamin D

nutritional status and risk of diabetes. This study found no association of 1,25(OH)2D with

risk of type 2 diabetes. We therefore do not suggest any benefit from measuring 1,25(OH)2D

in future studies of the etiology of type 2 diabetes.

A decision was made in 1997 to include all members of the cohort who were alive. No sam-

pling was done, so there was no design need for a formal sample size calculation. Lower than

optimal power may have caused this study to miss the chance of detecting a true association,
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such as an inverse association between plasma 25(OH)D and risk of type 2 diabetes. However

this association emerged as statistically significant. Still, the size of the present cohort may

have been inadequately large to detect associations with other covariates. Therefore this study

should not be used to rule out such associations.

Vitamin D supplementation only occurred in participants who were also taking calcium

supplements. Therefore it was not practical to perform a separate analysis for vitamin D

supplements.
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