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Abstract

The physiologically active form of vitamin D, 1,25-dihydroxyvitamin D3, is a fat-soluble steroid 

hormone with a well established role in skeletal health. A growing body of evidence suggests that 

low vitamin D levels also play a role in the pathogenesis of a wide range of non-skeletal age-

associated diseases such as cancer, heart disease, type 2 diabetes and stroke. Low serum 25-

hydroxyvitamin D (25(OH)D) levels, a stable marker of vitamin D status, are also associated with 

increased odds of prevalent cognitive dysfunction, Alzheimer’s and all-cause dementia in a 

number of studies, raising the possibility that vitamin D plays a role in the aetiology of cognitive 

dysfunction and dementia. So far the majority of human studies reporting associations between 

vitamin D and cognition or dementia have been cross-sectional or case-control designs that are 

unable to exclude the possibility that such associations are a result of disease progression rather 

than being causal. Animal and in-vitro experiments have identified a number of neuroprotective 

mechanisms that might link vitamin D status to cognitive dysfunction and dementia including 

vasoprotection and amyloid phagocytosis and clearance, but the clinical relevance of these 

mechanisms in humans is not currently clear. Two recent large prospective studies go some way to 

establish the temporal relationship with cognitive decline. The relative risk of cognitive decline 

was 60% higher (relative risk 1.60, 95% CI 1.2-2.0) in elderly Italian adults who are severely 

deficient (<25 nmol/L) when compared them with those sufficient (>75 nmol/L). Similarly the 

odds of cognitive decline were 41% higher (odds ratio 1.41, 95% CI 0.9-2.2) when elderly US 

men in the lowest quartile (<50 nmol/L) were compared with those in the highest quartile (>74 

nmol/L). To our knowledge no prospective studies have examined the association between 

25(OH)D levels and incident dementia or neuroimaging abnormalities. The possible therapeutic 

benefits of vitamin D have attracted considerable interest as over 1 billion people worldwide are 
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thought to have insufficient 25(OH)D levels, which can be increased using inexpensive well-

tolerated dietary supplements. However, no large randomized controlled trials have yet examined 

the effect of vitamin D supplements upon cognitive decline or incident dementia. Further studies 

are urgently needed to establish which mechanisms may have clinical relevance in human 

populations and whether vitamin D supplements are effective at minimizing cognitive decline or 

preventing dementia.

Introduction

The physiologically active form of vitamin D, 1,25-dihydroxyvitamin D3, is a fat-soluble 

steroid hormone with a well established role in skeletal health.[1, 2] Meta-analyses of 

randomized controlled trials suggest that vitamin D supplementation reduces the risk of 

fractures,[3] falls,[4] and mortality.[5] A growing body of evidence suggests that low 

vitamin D levels also play a role in the pathogenesis of a wide range of non-skeletal age-

associated diseases such as various cancers,[6] type 2 diabetes,[7] cardiovascular disease,[8] 

hypertension[9] and stroke.[10] Low serum 25-hydroxyvitamin D (25(OH)D) levels, a stable 

marker of vitamin D status, are also associated with increased odds of prevalent cognitive 

dysfunction and dementia in a number of studies, raising the possibility that vitamin D plays 

a role in the aetiology of cognitive dysfunction, Alzheimer’s disease and all-cause dementia.

[11, 12]

In 2005 it was estimated that 24.3 million people worldwide were affected by dementia, and 

this was predicted to rise to 81.1 million people by 2040.[13] The majority of people with 

dementia exhibit clinically significant neuropsychiatric symptoms, and in the later stages 

dementia results in total dependency, frailty and death.[14] The impact on families can be 

devastating and caregiving is associated with substantial psychological and physical 

morbidity.[15, 16] Drugs such as donepezil hydrochloride result in modest symptomatic 

improvements for some patients but do not modify the underlying disease processes and can 

have troubling side-effects.[17-19] Insufficient evidence currently exists to support the use 

of any medication or intervention for the primary prevention of dementia.[20] The 

identification of cost-effective well-tolerated disease modifying treatments that are effective 

at preventing or treating cognitive impairment and dementia would have a striking 

population impact given their high population prevalence.[21]

This review provides an overview of the emerging literature linking vitamin D status with 

cognitive dysfunction and dementia in older adults. Key findings, potential mechanisms and 

the limitations of existing studies are addressed, and recommendations are made for future 

research addressing key areas of uncertainty.

Vitamin D

Sources and metabolism

Vitamin D is a fat-soluble steroid prohormone produced in skin through UVB irradiation of 

7-dehdrocholesterol, dietary sources such as oily fish, and dietary supplements.[22] Vitamin 

D is inert until it is metabolised in the liver to form 25-hydroxyvitamin D (25(OH)D) and 
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subsequently metabolised primarily in the kidneys, producing the physiologically active 

hormonal form of 1,25-dihydroxyvitamin D (1,25(OH)2D3). Once activated, 1,25(OH)2 D 

facilitates calcium and phosphorous absorption and regulates gene transcription through 

vitamin D receptors (VDR) that are present in many organs, including the brain.[2, 23]

Sunlight exposure

In most individuals more than 90% of serum vitamin D is produced by the skin in response 

to sunlight exposure, as dietary sources such as oily fish contain only modest amounts.[24, 

25] At latitudes less than 37°, sunlight exposure for 5-15 minutes on the arms and legs 

between 10am and 3pm between spring and autumn is thought to be adequate to prevent 

vitamin D inadequacy with skin types II (strong tendency to burn and rarely tans) and III 

(sometimes burns, sometimes tans).[26] Sunlight exposure has often been discouraged due 

to concerns over skin cancer, and have prompted major public health and mass media 

campaigns such as those in Australia encouraging safe sunlight exposure.[27] However, the 

risks associated with excessive UVB radiation exposure may need to be balanced by the 

need for sensible sunlight exposure in order to maintain adequate vitamin D levels.[28] 

Reduced sunlight strength at latitudes further away from the equator, and reduced hours of 

sunlight in winter months, result in insignificant levels of cutaneous vitamin D production.

[29, 30] In addition, certain population groups are less able to synthesize vitamin D from 

sunlight exposure. Homebound and older adults are at risk of Vitamin D deficiency due to 

minimal sunlight exposure [31] and the declining capacity of skin to produce vitamin D with 

age.[32, 33] Ethnic minority groups are also more likely to be vitamin deficient as a result of 

darker skin pigmentation,[34-36] as are those who cover their skin when outdoors.[37-39]

Definitions of vitamin D status and deficiency

Serum 25-hydroxyvitamin D (25(OH)D) levels are widely used as an indicator of vitamin D 

status as it provides a relatively stable and accurate indicator of bioavailability.[40] Serum 

25(OH)D levels are either expressed as ng/mL or as nmol/L (to convert ng/mL to nmol/L 

multiply by 2.496).[41] Thresholds used to define vitamin D deficiency (hypovitaminosis D) 

are typically based upon traditional thresholds thought to be adequate to maintain skeletal 

health, and their relevance to non-skeletal diseases has yet to be fully established. A 

common cut-point to define deficiency is <50 nmol/L, although other cut-points used range 

from <25 nmol/L to <64 nmol/L.[22, 42] Definitions of insufficiency range from 

25-50nmol/L[43] to 65-74nmol/L[42]. Sufficiency has been defined as >50nmol/L,[44, 45] 

although there is increasing consensus that serum 25(OH)D levels should be at least 

75nmol/L for optimal health.[3, 22, 46] Some authors have also proposed a further 

distinction between deficiency (25-50 nmol/L) and severe deficiency (<25 nmol/L).[22, 47] 

While there is clear consensus regarding the use of 25(OH)D levels as an indicator of 

vitamin D status, it is also clear that the cut-points used to define deficiency and sufficiency 

remain disputed.

Population levels of vitamin D

Population-based studies of older adults in Europe and the US suggest that vitamin D 

deficiency is common although may vary by country of residence.[48, 49] For example, data 

from the nationally representative Health Survey for England (HSE) 2005 revealed a 
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substantial proportion of people aged 65 or above (n=2070) with serum 25(OH)D levels <50 

nmol/L (men: 49%, women: 58%), and <25 nmol/L (men: 8%, women: 14%).[50] In the 

Netherlands, blood samples were collected from respondents aged 65 or above (n=1319) 

participating in the Longitudinal Aging Study Amsterdam (LASA).[51] In this sample, 

serum 25(OH) levels was <50 nmol/L in 48.4%, and <25 nmol/L in 11.5% of participants. 

US population-based data (n=5555 aged ≥50 years) from the National Health and Nutrition 

Examination Survey (NHANES) 2000-2004 showed approximately one quarter of males 

(50-69 years: 27%; ≥70 years: 27%) and a third of females (50-69 years: 36%; ≥70 years: 

34%) had serum levels <50nmol/L.[52] The prevalence of 25(OH)D levels <25 nmol/L was 

low (50-69 years: 4%; ≥70 years: 4%). Levels of vitamin D deficiency appear to vary by 

country according to latitude, sunlight exposure, clothing habits, skin pigmentation, age, the 

fortification of staple foods such as milk, and the use of sun block and vitamin D 

supplements.[48, 49] Thus latitude is not the only factor in determining population vitamin 

D levels, and social, demographic and behavioural factors are also important. It is estimated 

that over 1 billion people worldwide are thought to have insufficient 25(OH)D levels (<75 

nmol/L).[53]

Vitamin D intake and dietary supplementation

The Western diet does not protect from Vitamin D deficiency. On the contrary, reduced 

Vitamin D levels found in the rising numbers of morbidly obese subjects are thought to be 

primarily attributed to insufficient intake of micronutrients.[54] Whilst the association of 

25(OH)D levels and body mass index is a consistent finding,[55] a study from Norway 

found that 1 in 3 women and 1 in 2 men with a BMI ≥40 were Vitamin D deficient.[56] 

Dietary supplements may be required for the maintenance of sufficient 25(OH)D levels, 

particularly those living at high latitudes (37°+) and high risk groups such as ethnic minority 

groups and older adults.[57, 58] Supplements containing 400 International Units (IU) are 

likely to result in a stable increase of serum 25(OH)D levels by 7 nmol/L.[59] The Institute 

of Medicine (IoM) recently updated their guidance and increased the recommended daily 

intake of vitamin D to 600 IU for those aged 1-70 years and 800 IU for those over 70 years 

of age, assuming minimal sunlight exposure.[60] Their guidance also stipulates a Tolerable 

Upper Intake Level (TUIL), the higher boundary of intake associated with no adverse events, 

of 4000 IU per day. The IoM recommendations are largely based on studies of skeletal 

health, in part because of the comparatively limited evidence for other health outcomes. 

Reviews that have also considered the existing evidence for non-skeletal health have 

proposed higher intake levels of 1000 IU/d and 2000 IU/d,[53, 61, 62] hence it is possible 

that IoM recommended daily intake levels are insufficient.[63] Future studies of non-skeletal 

diseases, including Alzheimer’s disease and dementia, may therefore support the argument 

to further increase the recommended daily intake of vitamin D. The optimal dose of vitamin 

D in relation to cognitive outcomes is unknown, although supplements are inexpensive and 

well-tolerated.[64] Extremely high doses present a risk of vitamin D toxicity 

(hypervitaminosis D), which can cause hypertension and hypercalcemia. Some argue that 

the TUIL of 4000 IU/d is too low to allow supplementation at levels beneficial to public 

health.[65, 66] Authors of a review of 21 clinical trials of vitamin D supplementation 

proposed the TUIL be increased to 10000 IU/d on the basis that no adverse events had been 

reported in trials using this dose.[64] Total-body sun exposure quickly provides the 
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equivalent of 10000 IU/d, suggesting that this is a physiologic limit.[67] Hypervitaminosis 

has only been reported with serum 25(OH)D levels of >374nmol/L[22] and >500nmol/L,

[68] levels that are considerably higher than those observed in study participants receiving 

10000 IU/d (213 to 220 nmol/L).[64]

Neuroprotective properties of vitamin D

The hormonally active form of vitamin D, 1,25(OH)2D3, is the key mediator of the vitamin 

D endocrine system which produces biological effects in over 50 tissues.[69] It is well 

established that vitamin D is involved in mammalian brain functioning, and vitamin D 

deficiency in mice impairs learning.[70, 71] An early study of Alzheimer’s disease patients 

revealed the gene expression of VDR in humans.[72] It was subsequently confirmed that the 

VDR, and the enzyme responsible for formation of the active vitamin in the human brain, 

1α-hydroxylase, are widespread in both neurons and glial cells within brain regions critical 

for cognition.[23, 73] Furthermore, recent evidence has revealed that gene variations of the 

VDR, such as Bsml, Taql polymorphisms, influence the likelihood of cognitive impairment.

[74]

1,25(OH)2D3 strongly stimulates amyloid beta (Aβ; a hallmark pathological lesion in 

Alzheimer’s disease) phagocytosis and clearance whilst protecting against apoptosis in the 

macrophages of patients with Alzheimer’s disease.[75] In primary cortical neurons Aβ 
triggered neurodegeneration by dramatically suppressing VDR gene expression.[76] 

Administration of 1,25(OH)2D3 to this model protected neurons by preventing cytotoxicity 

and apoptosis, and downregulating L-type voltage sensitive calcium channels A1C (LVSCC 

A1C) and upregulating VDR. 1,25(OH)2D3 treatment protects against glucocorticoid-

induced apoptosis in hippocampal cells, likely to represent a mechanism of vitamin D-

mediated neuroprotection.[77] This may have important implications in disorders with 

dysregulated glucocorticoid signaling, including Alzheimer’s disease.[78] Vitamin D 

upregulates the production of several neurotrophin factors, such as glial cell line derived 

neurotrophic factor (GDNF) and neurotrophin-3 (NT-3), which promote the survival, 

development and function of neurons.[79, 80] Chronic 1,25(OH)2D3 treatment protects 

against the neurotoxicity of glutamate exposure by upregulating VDR gene expression in 

cultured rat cortical neurons.[81] Vitamin D also has direct antioxidant effects, for example, 

1,25(OH)2D3 prevents zinc-induced oxidative injuries and apoptosis in vivo.[82] 

1,25(OH)2D3 reduces nitric oxide synthesis and inhibits the production of inducible nitric 

oxide synthase,[83] an enzyme upregulated during ischemic events and in Alzheimer’s 

disease.[84, 85]

A previously unrecognized consequence of vitamin D deficiency may be reduced 

endogenous neuroprotection against calcium toxicity. Alzheimer’s disease and cognitive 

impairment are associated with altered neuronal CA2+ homeostasis, and 1,25(OH)2D3 is the 

major CA2+ regulatory hormone in the periphery.[86-88] Evidence from a rodent study 

suggests a direct neuroprotective action of 1,25(OH)2D3 at relatively low concentrations 

(1-100 nM).[89] Similarly treatment with 500 ng/kg of 1,25(OH)2D3 over 7 days reduced 

Ca2+ mediated biomarkers of ageing in rat hippocampal neurons.[90]
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Vitamin D and cerebrovascular pathology

In a cross-sectional study of 318 US elders receiving home care severe 25(OD)D deficiency 

(<25 nmol/L) was associated with greater white matter hyperintensity volume (4.9 vs. 2.9 

mL), white matter hyperintensity grade (3.0 vs. 2.2), and the prevalence of large vessel 

infarcts (10.9% vs. 6.9%) in comparison with elders with higher levels (>50 nmol/L).[43] To 

our knowledge no prospective study in humans has examined the association between serum 

25(OH)D levels and neuroimaging abnormalities such as white matter hyperintensities and 

infarcts. However, the risk of clinically defined cerebrovascular accident was considerably 

higher in 26025 US adults with low levels of 25(OH)D (<37.5 nmol/L) in comparison with 

those with sufficient levels (≥75 nmol/L) over a mean follow-up of 1.3 years (HR=1.78, 

p=0.004).[10] Similarly low 25(OH)D was independently predictive of fatal stroke in a study 

of 3316 coronary angiography patients over a mean of 7.8 years (OR per seasonally adjusted 

z value=0.67, 95% CI 0.46-0.97).[91] As 1,25(OH)2D3 modulates the immune system it 

may also protect against the spread of ischemic injury.[92] Administration of 1,25(OH)2D3 

for eight days attenuated cortical infarction induced by middle cerebral arterial ligation in 

rats.[93] Low 25(OH)D levels may also increase the risk of cerebrovascular pathology 

indirectly by increasing hypertension, diabetes and cardiovascular disease.[94]

Serum 25(OH)D levels and Dementia

Several studies have explored the association between vitamin D and all-cause dementia or 

Alzheimer’s disease in older people.[42, 43, 95] A US case-control study reported that 

samples of Alzheimer’s (n=97) and community control (n=99) participants had comparable 

serum 25(OH)D levels (p=0.30), whereas those with Parkinson’s disease had significantly 

lower levels than controls (p=0.01).[42] A Japanese study reported that in comparison with 

community controls (n=100), participants with Alzheimer’s disease (severe: n=58; mild: 

n=42) had significantly lower levels of vitamin D (p<0.001).[95] In a study of US 

community-dwelling participants, those with all-cause dementia (n=76), and sub-groups of 

participants with Alzheimer’s disease (n=41) and vascular dementia (n=21) were all reported 

to have lower serum 25(OH)D levels than controls (n=211) (p<0.01 for all comparisons).

[43] Logistic regression modeling in the latter study indicated that, after adjustment for age, 

race, sex, body mass index and education, participants with vitamin D insufficiency (<50 

nmol/L) were more than twice as likely to suffer from all-cause dementia (OR: 2.3, 95% CI 

1.2 to 4.2) and from Alzheimer’s dementia (OR: 2.5, 95% CI 1.0 to 6.1), than those with 

25(OH)D levels ≥50 nmol/L. To our knowledge no prospective study has investigated the 

associations between 25(OH)D levels and incident Alzheimer’s disease, vascular dementia 

or all-cause dementia.

Serum 25(OH)D levels and Cognitive Dysfunction

Several cross-sectional studies from Europe[47, 96, 97] and the US[98, 99] have explored 

the association between vitamin D and global cognitive function. Analysis of data on 

community-dwelling older women (n=752) aged 75 or above in France showed those with 

deficient 25(OH)D levels (<25 nmol/L) were twice as likely to be cognitively impaired 

(OR=2.0, 95% CI 1.1 to 3.5; p=0.02) as those with levels ≥25 nmol/L.[96] A study of US 
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community-dwelling participants (n=1080) aged 65 and above also defined vitamin D 

deficiency as <25 nmol/L, and reported a significant association with cognitive impairment 

(β coefficient=0.01, p=0.05).[99] Analysis of data from older people referred to a US 

geriatric outpatient clinic with a diagnosis of probable Alzheimer’s disease (n=225) 

demonstrated a significant association between vitamin D deficiency (<50 nmol/L) and 

cognitive impairment (β coefficient=0.05, p=0.01).[97] In a US community sample of older 

people (n=3396), those with severe deficiency (<25 nmol/L) were four times as likely 

(OR=3.9, 95% CI 1.4 to 10.4) to be cognitively impaired compared with those with serum 

levels of ≥75 nmol/L (p-value for linear trend=0.02).[98] Analysis of data from a sample of 

community-dwelling older people and care home residents (n=1766) in England found that 

participants with serum 25(OH) levels in the lowest quartile of measurements were more 

than twice as likely (OR=2.3, 95% CI 1.4 to 3.8) to be cognitively impaired compared with 

those in the highest quartile (p-value for linear trend=0.001).[47] An important limitation of 

these cross-sectional and case-control studies is that are unable to exclude the possibility that 

such associations are a result of disease progression rather than being causal.

Two recent large prospective studies go some way to establish the temporal relationship with 

cognitive decline. In a population of community-dwelling older Italian adults (n=858), those 

identified as severely 25(OH)D deficient (<25 nmol/L) were at increased risk of substantial 

cognitive decline over a six-year period compared with those with sufficient (≥75 nmol/L) 

levels (RR=1.6, 95% CI 1.2 to 2.0).[98] Similarly in community-dwelling older US males 

(n=1136), those in the lowest 25(OH)D quartile (<50 nmol/L) had borderline increased odds 

of cognitive decline (OR=1.4, 95% CI 0.9-2.2) in comparison with those in the highest 

quartile (>74 nmol/L).[100] The small difference in these results may reflect the cut-points 

used to define vitamin D status (a priori groups vs. quartiles) or genuine differences between 

the countries or studies (possibly reflecting latitude, sociodemographic or behavioural 

factors). Median 25(OH)D levels were 41.4 nmol/L in Italian older adults (unpublished data) 

and 62.6 nmol/L in US older males,[100] although differences in the assays and laboratories 

used make direct comparisons problematic. Further studies are therefore needed to clarify if 

the association between 25(OH)D levels and cognitive decline are stronger at lower 

concentrations and whether there is a threshold below which the risk of cognitive decline 

markedly increases. (We hypothesize that such a threshold may lie in the 25 to 50 nmol/L 

range.) In the meantime these recent prospective studies provide preliminary evidence to 

suggest an association between low 25(OH)D levels and an increased risk of cognitive 

decline.[100, 101]

Three randomized controlled trials have assessed the treatment effect of vitamin D on 

cognitive function with mixed results, although all are of insufficient methodological quality 

due to small sample size (n=82[102], n=96[103]) and/or the use of very low daily doses of 

vitamin D taken in combination with other nutrients (160 IU/d[103], 520 IU/d[104]). One 

trial observed no improvement in mental state although the authors did not report the p-

value,[102] one observed an improvement in overall cognitive function,[103] while the third 

trial only observed improved overall cognitive function in a subanalysis of lean individuals.

[104] However, one trial[103] was subsequently retracted due to concerns regarding the 

methodology and analysis employed.[105]
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Limitations of the current evidence

Studies of the association between 25(OH)D and cognitive dysfunction and dementia have 

used a variety of assays to measure serum 25(OH)D, including radioimmunoassay (RIA), 

competitive protein binding assay (CPBA), enzyme-linked immunoassay (ELISA) and, 

liquid chromatography–tandem mass spectrometry (LC-MS/MS). 25(OH)D levels are 

known differ by assay and laboratory,[106] which has led to calls for a standardisation of 

methods.[107, 108] LC-MS/MS methods are currently considered to be the most accurate, 

particularly at lower concentrations.[109]

Heterogeneity in relation to the 25(OH)D cut-points used to define vitamin D status and 

differences in the outcome measures for cognitive function and diagnostic criteria for 

dementia also make it difficult to compare results between studies. The inability to directly 

compare vitamin D status and outcome measures hampers attempts to synthesize results and 

will make future meta-analyses methodologically challenging.

Given the known associations between 25(OH)D levels and a wide range of health 

conditions, such as various cancers,[6] type 2 diabetes,[7] cardiovascular disease,[8] 

hypertension,[9] obesity,[110] and stroke,[10] it could be argued that vitamin D status is 

simply a marker for poor health status. However, vitamin D may increase the risk of 

cognitive dysfunction and dementia indirectly by increasing the risk of non-skeletal diseases 

that are themselves associated with dementia. For example, there is preliminary evidence to 

suggest that cerebrovascular disease[43] or type 2 diabetes[98] may partially mediate the 

association between 25(OH)D levels and cognitive dysfunction. Randomized controlled 

trials are therefore needed to establish whether improving vitamin D levels reduces the risk 

of dementia.

The possibility of reverse causation remains a concern[111] given that the majority of 

existing studies have been cross-sectional or case-control in design. Reverse causation is a 

particular concern in studies of vitamin D status and dementia where disease progression 

may lead to reduced mobility and outdoor activity, which may reduce 25(OH)D levels due to 

restricted sunlight exposure.[112, 113] However, prospective designs help to establish the 

temporal relationship between 25(OH)D levels and cognitive decline and dementia.

While animal and in-vitro experiments have identified a number of neuroprotective 

mechanisms that might link vitamin D status to cognitive dysfunction and dementia their 

clinical relevance in human populations has yet to be fully established. To our knowledge no 

prospective studies or randomized controlled trials have investigated the association between 

25(OH)D levels and dementia subtypes, such as Alzheimer’s disease, or neuroimaging 

abnormalities which might provide important new aetiological insights.

Implications for future research

1) Large prospective studies of human populations are needed to provide new 

information about the effect size that could reasonably be expected in future 

trials and the dose of vitamin D likely to result in a clinically meaningful 

difference in underlying cerebrovascular and neurodegenerative mechanisms.
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2) Prospective studies of incident Alzheimer’s disease, all-cause dementia and 

neuroimaging abnormalities are a particular priority.

3) In an attempt to address the possibility of reverse causation prospective 

analyses should be statistically adjusted for baseline cognitive function, 

physical function/impairment and other potential confounders. Participants 

with dementia at baseline may also be excluded in primary or secondary 

analyses.

4) Investigators should also consider the possibility of inappropriate adjustment 

for covariates. For example, latitude is an important influence upon 25(OH)D 

levels,[48, 49] although it is not clear how this could confound an association 

between 25(OH)D levels and cognitive decline or dementia.

5) Large well-designed randomized controlled trials will ultimately be necessary 

to determine whether vitamin D supplementation is effective at minimizing 

cognitive decline or preventing dementia. However, prospective studies will 

provide vital information to refine the design and reduce the cost of these trials.

6) Steps to standardize laboratory methods and assays are needed to ensure 

comparability of 25(OH)D levels.[107, 108] Further research is therefore 

warranted to investigate whether the strength of observation observed is 

partially dependent upon 25(OH)D assay used.

7) Further prospective research is needed to investigate associations in key 

subgroups at risk of 25(OHD)D deficiency (e.g. homebound older adults[31], 

ethnic minority groups[34-36] and obese subjects[110]).

Conclusions

Cross-sectional and case-control studies have established that low 25(OH)D levels are 

associated with prevalent cognitive dysfunction and dementia, however these studies are 

prone to the possibility of reverse causation. Animal and in vitro experiments suggest that 

vitamin D has therapeutic potential for the prevention and treatment of cognitive decline and 

dementia. Two recent prospective studies also suggest that low 25(OH)D levels increase the 

risk of substantial cognitive decline. To our knowledge no prospective studies or randomized 

controlled trials have examined the association with dementia or associated neuroimaging 

abnormalities. Large prospective studies of human populations and randomized controlled 

trials are urgently needed to clarify the temporal and causal relationships between vitamin D 

status and cognitive dysfunction and dementia. If we confirm that low 25(OH)D levels are a 

potentially modifiable risk factor for cognitive decline and dementia then this would 

represent an important breakthrough as vitamin D deficiency is common in older adults and 

supplements are inexpensive and well-tolerated.
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