UPI (Universal Poker Interface) documentation. This protocol is used by PioVIEWER and other tools to communicate with
PioSOLVER. The architecture was inspired by UCI (http://en.wikipedia.org/wiki/Universal_Chess_Interface). Similarly to UCI, UPI
allows programmers to create their own tools based on PioSOLVER engine as well as easy scripting for non-programmers.

LAST EDITED: August 2th 2016
(PioSOLVER 1.9)

1)NodelD - those are constructed as follows:

-r = root node

-r:0 = first decision node

-r:0:b100:c:8h:c:b50:As - actions are separated by a colon (“:”), bets are always a cumulative amount invested by a player so far; ¢
stands for a check or call; b stands for a bet or raise (always to cumulative amount); cards or full flops are written as they appear in
the tree

2)Command arguments:

-are separated by spaces

-if you want to use an argument with a space in it (for example as a file path), use quotation marks, like this: “C:\docs and settings\my
file name.cfr”

3)General remarks for programmers working with PioSOLVER:

-In PioViewer: Tools->Configuration->enable logging writes all the Viewer <-> Solver communication to log.txt file
-In pioviewer.settings file, under [Debug] add ConsoleEnabled=true line, like this:

[Debug]

DebugMode=false

ConsoleEnabled=true

After that the viewer starts in console enable mode and you can see the communication as it happens in real time
-When you try to understand how to obtain data or results from the solver the best way is to follow the above mentioned points and
do it in PioViewer. PioViewer is not a privileged program in any way, it uses the very same text interface which is available to you.

http://en.wikipedia.org/wiki/Universal_Chess_Interface

Request Arguments Response format Description Possible errors
GENERAL
is_ready n/a is_ready ok! useful for checking if solver is initialized
go [n seconds | steps] go ok! optional argument runs solver for n seconds
Solver will emit: or steps; if omitted solver will run indefinitely
SOLVER: started once (unless accuracy is set and reached)
running
stop n/a stop ok! stop signal and waits for solver to stop
Solver will emit: (SOLVER: stopped) and then issues stop ok!
SOLVER: stopped once
stopped
show_hand_order n/a List poker hands. E.g. This command always returns all 1326 hands
“‘AcAd AdAh AdAs ..." in the same order. Other commands return
1326 numbers representing e.g. frequency of
hands in a certain spot in this order.
Format: 1326 hands separated by “ “ “2d2c
2h2c 2h2d ...”
show_preflop_order n/a List of 169 preflop As used for calc_eq_preflop
categories
solver_time n/a a float The time since the current solver instance
started in seconds
exit n/a n/a kills solver’s process
show_settings n/a name: value (multiline) accuracy: (solver stops after reaching it)

thread_no: how many threads are allowed (0

is as much as possible)

info_freq: how often sovler outputs results of
the computation; default 25 (which means
25 steps for each player or 50 overall)

step: starting multiplier for step size of the
algorithm

hopeless_thres: when the algorithm starts
adjusting (if last improvement is less than
hopeless_thres then adjust)

adjust_mode: 0 = manual, 1 = autoadjust

show_tree_params

n/a

name: value (multiline)

board: cards (in readable format) or “not set”
pot: 3 integers representing starting pot

bet_sizes: bet sizes used for automatically
building a tree; absolute values (not % of the

pot)

donk_bet: TRUE/FALSE if flop donkbet
should be included in the tree (omitting it
makes the tree almost 2x smaller)

load_script

filename

load_script ok!

reads commands from file; line after line and
executes them as if they were inserted on
stdin; after reaching EOF goes back to

receiving input from stdin

bench

n/a

Time taken: float

builds a tree about 2.7GB big, runs 6 full
iterations on it; returns running time for those
(but not time taken to build/free the tree).
Designed to take about 30 seconds on i7
quad

set _threads

int

set_threads ok!

sets number of threads used by solver and
all functions requaring tree traversal (like
show_range, calc_ev etc.)

set_info_freq

int

set_info_freq ok!

sets how often solver info is released
(defeault is every 25 steps)

set_recalc_accuracy

float float float

set_recalc_accuracy ok!

sets accuracy for flop/turn/river recalculations
(which occur when browsing incomplete tree
or calling solve_partial)

set_adjust_strat

float float int

set_adjust_strat ok!

1st argument: starting step

2nd argument: hopeless_thres

3rd argument: adjust_mode (0: manual, 1:
auto)

set_isomorphism int int set_isomorphism ok! 1st argument - isomorhism on/off for flop
trees
2nd argument - isomorphism on/off for turn
trees
the default is on on the flop off on the turn

take_a_break int take_a_break ok! stops the solver (if it's running) and waits n
seconds before going back to reading the
input

is_tree_present n/a true | false returns true if a tree the solver is operating

on exists

BUILDING/DELETING

TREES

set_range OOP | IP 1326floats | set_range ok! sets range for IP/OOP in a global state

set_eff stack int Set_eff_stack ok! Sets effective stack. This is used in tree
building to recognize which nodes are all-in
nodes and which aren't.

set_board As Kh 7d etc. set_board ok! sets board in a global state

set_bet_sizes

b1 ... bnintegers

set_bet_sizes ok!

sets bet sizes used for constructing a tree

(deprecated)
set pot intint int set_pot ok! sets starting pot
set_donk_bet 01 set_donk_bet ok! if flop donk_bet should be included when

(deprecated)

constructing a tree

set_accuracy

float [chips | fraction]

set_accuracy ok!

accuracy at which solver stops;

default is 0 (never). If optional argument is
provided the value is treated either as
absolute value (chips) or fraction of the pot
(fraction). “chips” is the default.

build_tree n/a build_tree ok! build a tree based on a config created by
calling add_line and remove_line
build_tree old n/a build_tree ok! uses board/ranges/bet_sizes/pot/donk_bet

(deprecated)

(in the future maybe more parameters) to

build a tree; all those have to be set before
calling build_tree

rebuild_tree n/a rebuild_tree ok! uses tree structure of current tree; refills
(deprecated) boards (using current state.board at root) and
resets strategies
load_tree filename load_tree ok! Loads the tree from the content of the save i/o errors, file format
file into memory. State.root points to this tree | error, out of memory
dump_tree Filename [full | dump_tree ok! saves current tree to disc; if optional
no_turns | no_rivers | argument is provided (no_turns or no_rivers)
| a small save will be made while the whole
tree is preserved in memory.
free_tree n/a free_tree ok! deletes current tree and frees the memory
(as of now still has slight memory leak about
300kb per tree)
add_line series of numbers add_line ok! 0 30 30 30 90 represents a check OOP, bet
representing bet IP, a call, a check on the turn and a bet of 60
sizes (cumulative) (90 total invested). See more examples in
sample scripts.
remove_line series of numbers remove_line ok! remove_line uses the same syntax as
representing a line to add_line. It’s possible to remove calls and
remove folds as well:
0 30 0 removes a fold for OOP player in
response to c-bet
cut_line nodelD cut_line ok! removes a line from the tree (that is all the

branches for all the runouts leading to
specified line)

force_line

series of numbers
representing bet
sizes

force_line ok!

removes all the lines which don’t lead to the
one being forced (so any line of which forced
line isn’t a prefix of)

PREFLOP TREE
BUILDING

build_preflop_tree

n/a

Build_preflop_tree ok!

Builds a pure preflop tree using a descriptioin
as defined by add_preflop_line’s commands.

add_preflop_line

Series of numbers
representing bet
sizes (cumulative)

Add_preflop_line ok!

Identical as add_line but builds a pure preflop
tree (one street)

clear_preflop lines

n/a

Clear_preflop_lines ok!

Clears preflop tree structure created by
add_preflop_line

remove_preflop_line

Series of numbers
representing a line to
remove

Remove_preflop_line
ok!

Same as remove_line but for preflop

add to subset

Float card card cards

Add_to_subset ok!

Adds a specified board with specified weight
to a flop subset; that subset can be then
used to build a full preflop tree with selected
flops

reset_subset

n/a

Reset _subset ok!

Clears the current flop subset

show_subset

n/a

(multiline)
weight1 board1
weight2 board2

Prints current flops with weights from the flop
subset.

add_schematic_tree nodelD Add_schematic_tree ok! | Attaches a postflop abstraction to a chosen
preflop exit. NodelD must point to a
SPLIT_NODE which is a valid preflop exit.
Current schematic tree (one created by
add_line commands) is attached.
The way to use this command is to build a
postflop tree with add_line commands, attach
it to a chosen preflop exit; reset it, build
another postflop tree, attach it to another
preflop exit etc.
add_all_flops n/a Add_all_flops ok! Uses flops in a current flop subset to build a
full preflop tree.
TRAVERSING THE
TREE
show_node nodelD (multiline) the number of flags can vary from 0 to 64;
nodelD they are separated by space
NODE_TYPE
board
pot
children_no
flags: f1 ... f2
show_children nodelD (multiline) ... are in the same format as show_node
child 0:

child 1:

show_range OOP | IP [nodelD] 1326 floats range in given node; dead hands have
weight 0 (last part doesn’t work yet)
If only one argument is given then IP/OOP
range from solver state is shown (the one set
by set_range)
show_strategy nodelD (multiline) n line represents frequency of n’th action with
1326 floats i'th hand
1326 floats Error if nodelD doesn’t represent decision
node
show_strategy pp nodelD human readable sorted Error if nodelD doesn’t represent decision
(by equity vs ALL) node
output
calc_ev OOP | IP nodelD (2 lines) EV in the first one, matchups in 2nd
1326 floats
1326 floats
calc_ev_line OOP | IP nodelD (2lines) EV of a line, that is combined EV of the line
1326 floats on all the runouts following it; the format is
the same as in calc_ev
calc_ev_pp OOP | IP nodelD wins/matchups in

human readable format

calc_results

n/a

(multiline)

running time: float
EV OOP: float

EV IP: float

OOP’s MES: float
IP’s MES: float
exploitable for: float

calculates EV’s/MES’es in root and prints the
whole info;

calc_global_freq nodelD a float Returns probability of reaching a given node
calc_line_freq nodelD a float Returns probability of reaching a given line
(similar to calc_ev_line but returns one
number for probability and no evs)
OTHER FEATUERS
calc_eq OOP | IP (2lines) eq in the first line, matchups in 2nd
1326 floats board/ranges taken from solver state
1326 floats (set_range, set_board to set)
calc_eq_pp OOP | IP in human readable form
calc_eq_node OOP | IP nodelD (3lines) calculate equity for given player assuming
1326 floats ranges in given node; returned values:
1326 floats egs/matchups/overall
1 float
calc_eq_preflop OOP | IP (3lines) Calculates preflop equity from IP/OOP range
169 floats as set by set_range command.
169 floats It assumes weights for isomorphic (7s6s =
1 float 7h6h) combos is the same. The results are

unpredictable/incorrect if that's not the case.
Output format:

1line: equities
2line: matchups
3line: total

show_all_freqs global | local [pp] (multiline) Lists all lines in the tree with corresponding
All lines with frequncies either local (probability of taking
corresponsing last action) or global (probability of this line
frequencies being played); optional argument pp (pretty
print) makes the output easier to read for a
human
stdoutredi filename - redirects stdout to file
stdoutredi_append filename - redirects stdout to file but appends it instead
of overwriting
stdoutback n/a stdoutback ok! standard output back to console (might be
useful when using text interface, not for GUI)
estimate_tree n/a uint64 estimates size of the full tree before ranges
deprecated are initizalized
estimate_schematic_tr | n/a uint64 Estimates size of a tree based on
ee addline/remove interface; the results is in
Megabytes
wait_for_solver n/a waits until solver stops useful for scripts if one wants to solve

before reading rest of
the commands from
stdin

multiple trees (or solve and save for
example);

show_memory n/a (2 lines) shows total physical memory and totla
uint64 available physical memory (at the moment)
uint64

needed_memory n/a (2lines) first row: how much physical memory there
uint64 is; second row: how much is needed to build
uint64 a tree with current parameters

ignore_mem_check on | off ignore_mem_check ok! | if turned on the check for available RAM is

not performed. It may result in a computer
slowing down to a crawl if Windows starts
using a swap file.

skip_if_done filename label skip_if_done ok! checks if a filename exists if yes, skips all the
lines in the script until label is encountered

LABEL.: labelname none labels a place in the script; this is used by
skip_if done command above
(remember to include a space after a colon
and before the label name)

TREE OPERATIONS

forget turns | rivers forget ok! fills cache and forgets rivers or turns+rivers;

the tree is usable for browsing but not for
solving after that operation

clear_cache

n/a

clear_cache ok!

clears cached results in the tree;

rebuild_forgotten_stre | n/a rebuild_all ok! rebuilds all turns/rivers which were forgotten

ets by forget command; it’s spossible to resume

(rebuild_all) solving after that

solve_partial nodelD solver_partial ok! solve a subtree from given node to accuracy
in settings.accuracy

explo_partial nodelD float returns exploitability for a subtree starting
from given node

lock_node nodelD lock_node ok! locks strategy in given decision node; sets
LOCKED flag and unsets COMBO_LOCKED
flag

unlock_node nodelD unlock_node ok! unlocks strategy in given decision node;

unsets both LOCKED and
COMBO_LOCKED flags

combo_lock node

nodelD 1326 ints

combo_lock_node ok!

locks specific combos at given node (given
by nodelD). The function expects 1326 0 or 1
ints; 1 = this combo is locked, 0 = this combo
is not locked. COMBO_LOCKED flag is set
and LOCKED flag is unset.

set_strategy

nodelD childnum
1326 floats

set_strategy ok!

sets strategy in given decision node for
indicated child to provided values;

normalize tree

n/a

normalize_tree ok!

normalizes the strategies; there is usually no
need to call it as the solver normalizes the
tree itself when needed

set_mes

IP | OOP

set_mes ok!

sets strategy for IP or OOP to most exploitive
one in the whole tree

solve_all_splits

turns | rivers

solver_all_splits ok!

solve all forgotten parts of the tree to
accuracy defined in settings.recalc_accuracy
(it may take a long time)

node_count n/a multiline string returns number of nodes of various types on
flop/turn/river in human readable format
show_effective_stack | n/a int shows effective stacks in the tree

round_up_to

IP | OOP chunks_no
flop | turn | river

round_up_to ok!

rounds the strategies for given player using
specified number of chunks to divide the
strategy (4 chunks is 0 0.25 0.5 0.75 1); from
the flop up to specified street

RANGES & EVALS

show_category_name | n/a 2lines: shows names of hand/draws categories

S hand strength which are then used for range analysis
categories
draw categories

show_categories board 2lines: it returns categories ids (an order returned by
1326 ints show_category_names); first line is for hand
1326 ints categories like top_pair, 2nd one is for draws

