UPI (Universal Poker Interface) documentation. This protocol is used by PioVIEWER and other tools to communicate with
PioSOLVER. The architecture was inspired by UCI (http://en.wikipedia.org/wiki/Universal_Chess_Interface). Similarly to UCI, UPI
allows programmers to create their own tools based on PioSOLVER engine as well as easy scripting for non-programmers.

LAST EDITED: OCTOBER 11th 2015

(PioSOLVER 1.6 version)

Request Arguments Response format Description Possible errors
GENERAL
is_ready n/a is_ready ok! useful for checking if solver is initialized
go [n seconds | steps] go ok! optional argument runs solver for n seconds
Solver will emit: or steps; if omitted solver will run indefinitely
SOLVER: started once (unless accuracy is set and reached)
running
stop n/a stop ok! stop signal and waits for solver to stop
Solver will emit: (SOLVER: stopped) and then issues stop ok!
SOLVER: stopped once
stopped
show_hand_order n/a List poker hands. E.g. This command always returns all 1326 hands
“‘AcAd AdAh AdAs ..." in the same order. Other commands return
1326 numbers representing e.g. frequency of
hands in a certain spot in this order.
Format: 1326 hands separated by “ “ “2d2c
2h2c 2h2d ...”
show_preflop_order n/a List of 169 preflop As used for calc_eq_preflop
categories
solver_time n/a a float The time since the current solver instance

http://en.wikipedia.org/wiki/Universal_Chess_Interface

started in seconds

exit

n/a

n/a

kills solver’s process

show_settings

n/a

name: value (multiline)

accuracy: (solver stops after reaching it)

thread_no: how many threads are allowed (0
is as much as possible)

info_freq: how often sovler outputs results of
the computation; default 25 (which means
25 steps for each player or 50 overall)

step: starting multiplier for step size of the
algorithm

hopeless_thres: when the algorithm starts
adjusting (if last improvement is less than
hopeless_thres then adjust)

adjust_mode: 0 = manual, 1 = autoadjust

show_tree_params

n/a

name: value (multiline)

board: cards (in readable format) or “not set”
pot: 3 integers representing starting pot

bet_sizes: bet sizes used for automatically
building a tree; absolute values (not % of the

pot)

donk_bet: TRUE/FALSE if flop donkbet
should be included in the tree (omitting it
makes the tree almost 2x smaller)

load_script

filename

load_script ok!

reads commands from file; line after line and
executes them as if they were inserted on
stdin; after reaching EOF goes back to
receiving input from stdin

bench

n/a

Time taken: float

builds a tree about 2.7GB big, runs 6 full
iterations on it; returns running time for those
(but not time taken to build/free the tree).
Designed to take about 30 seconds on i7
quad

set_threads

int

set_threads ok!

sets number of threads used by solver and
all functions requaring tree traversal (like
show_range, calc_ev etc.)

set_info_freq

int

set_info_freq ok!

sets how often solver info is released
(defeault is every 25 steps)

set_recalc_accuracy

float float float

set_recalc_accuracy ok!

sets accuracy for flop/turn/river recalculations
(which occur when browsing incomplete tree
or calling solve_partial)

set_adjust_strat

float float int

set_adjust_strat ok!

1st argument: starting step

2nd argument: hopeless_thres

3rd argument: adjust_mode (0: manual, 1:
auto)

set_isomorphism

int int

set_isomorphism ok!

1st argument - isomorhism on/off for flop
trees
2nd argument - isomorphism on/off for turn

trees
the default is on on the flop off on the turn

take _a_break int take a_ break ok! stops the solver (if it's running) and waits n
seconds before going back to reading the
input

is_tree_present n/a true | false returns true if a tree the solver is operating

on exists

BUILDING/DELETING
TREES

set_range

OOP | IP 1326floats

set_range ok!

sets range for IP/OOP in a global state

set _board

As Kh 7d etc.

set_board ok!

sets board in a global state

set bet sizes

b1 ... bn integers

set_bet sizes ok!

sets bet sizes used for constructing a tree

(deprecated)
set_pot intint int set_pot ok! sets starting pot
set_donk_bet 0]1 set_donk_bet ok! if flop donk_bet should be included when

(deprecated)

constructing a tree

set_accuracy

float [chips | fraction]

set_accuracy ok!

accuracy at which solver stops;

default is O (never). If optional argument is
provided the value is treated either as
absolute value (chips) or fraction of the pot
(fraction). “chips” is the default.

build_tree

n/a

build_tree ok!

build a tree based on a config created by

calling add_line and remove_line

build_tree old n/a build_tree ok! uses board/ranges/bet_sizes/pot/donk_bet

(deprecated) (in the future maybe more parameters) to
build a tree; all those have to be set before
calling build_tree

build_pf tree n/a build_pf_tree ok! uses board/ranges/bet_sizes/pot/donk_bet
the same way as build_tree_old did;
donk_bet = if a call (completing of the blind)
ends the betting (donk_bet == 0 -> end the
beting, donk_bet == 1 -> don’t)

rebuild_tree n/a rebuild_tree ok! uses tree structure of current tree; refills

(deprecated) boards (using current state.board at root) and
resets strategies

load_tree filename load_tree ok! Loads the tree from the content of the save i/o errors, file format
file into memory. State.root points to this tree | error, out of memory

dump_tree filename dump_tree ok! saves current tree to disc

free_tree n/a free_tree ok! deletes current tree and frees the memory
(as of now still has slight memory leak about
300kb per tree)

add_line series of numbers add_line ok! 0 30 30 30 90 represents a check OOP, bet

representing bet IP, a call, a check on the turn and a bet of 60
sizes (cumulative) (90 total invested). See more examples in

sample scripts.

remove_line series of numbers remove_line ok! remove_line uses the same syntax as

representing a line to

add_line. It’s possible to remove calls and

remove folds as well:
0 30 0 removes a fold for OOP player in
response to c-bet
cut_line nodelD cut_line ok! removes a line from the tree (that is all the
branches for all the runouts leading to
specified line)
force_line series of numbers force_line ok! removes all the lines which don’t lead to the
representing bet one being forced (so any line of which forced
sizes line isn’t a prefix of)
TRAVERSING THE
TREE
show_node nodelD (multiline) the number of flags can vary from 0 to 64;
nodelD they are separated by space
NODE_TYPE
board
pot
children_no
flags: f1 ... f2
show_children nodelD (multiline) ... are in the same format as show_node
child O:

child 1:

show_range

OOP | IP [nodelD]

1326 floats

range in given node; dead hands have
weight O (last part doesn’t work yet)

If only one argument is given then IP/OOP
range from solver state is shown (the one set
by set_range)

show_strategy nodelD (multiline) n line represents frequency of n’th action with
1326 floats i'th hand
1326 floats Error if nodelD doesn’t represent decision

node

show_strategy pp nodelD human readable sorted Error if nodelD doesn’t represent decision
(by equity vs ALL) node
output

calc_ev OOP | IP nodelD (2 lines) EV in the first one, matchups in 2nd
1326 floats
1326 floats

calc_ev_line OOP | IP nodelD (2lines) EV of a line, that is combined EV of the line
1326 floats on all the runouts following it; the format is

the same as in calc_ev

calc_ev_pp OOP | IP nodelD wins/matchups in
human readable format

calc_results n/a (multiline) calculates EV’s/MES’es in root and prints the
running time: float whole info;
EV OOP: float
EV IP: float
OOP’s MES: float
IP’s MES: float

exploitable for: float

OTHER FEATUERS

calc_eq OOP | IP (2lines) eq in the first line, matchups in 2nd
1326 floats board/ranges taken from solver state
1326 floats (set_range, set_board to set)
calc_eq_pp OOP | IP in human readable form
calc_eq_node OOP | IP nodelD (3lines) calculate equity for given player assuming
1326 floats ranges in given node; returned values:
1326 floats egs/matchups/overall
1 float
calc_eq_preflop OOP | IP (3lines) Calculates preflop equity from IP/OOP range
169 floats as set by set_range command.
169 floats It assumes weights for isomorphic (7s6s =
1 float 7h6h) combos is the same. The results are
unpredictable/incorrect if that’s not the case.
Output format:
1line: equities
2line: matchups
3line: total
stdoutredi filename - redirects stdout to file
stdoutredi_append filename - redirects stdout to file but appends it instead
of overwriting
stdoutback n/a stdoutback ok! standard output back to console (might be

useful when using text interface, not for GUI)

estimate_tree n/a uint64 estimates size of the full tree before ranges

deprecated are initizalized

estimate_schematic tr | n/a uint64 Estimates size of a tree based on

ee addline/remove interface; the results is in

Megabytes

wait_for_solver n/a waits until solver stops useful for scripts if one wants to solve
before reading rest of multiple trees (or solve and save for
the commands from example);
stdin

show_memory n/a (2 lines) shows total physical memory and totla
uint64 available physical memory (at the moment)
uint64

needed_memory n/a (2lines) first row: how much physical memory there
uint64 is; second row: how much is needed to build
uint64 a tree with current parameters

ignore_mem_check on | off ignore_mem_check ok! | if turned on the check for available RAM is

not performed. It may result in a computer
slowing down to a crawl if Windows starts
using a swap file.

skip_if done filename label skip_if _done ok! checks if a filename exists if yes, skips all the
lines in the script until label is encountered
LABEL.: labelname none labels a place in the script; this is used by

skip_if _done command above
(remember to include a space after a colon
and before the label name)

TREE OPERATIONS

forget turns | rivers forget ok! fills cache and forgets rivers or turns+rivers;
the tree is usable for browsing but not for
solving after that operation

clear_cache n/a clear_cache ok! clears cached results in the tree;

rebuild_forgotten_stre | n/a rebuild_all ok! rebuilds all turns/rivers which were forgotten

ets by forget command; it’s spossible to resume

(rebuild_all) solving after that

solve_partial nodelD solver_partial ok! solve a subtree from given node to accuracy
in settings.accuracy

explo_partial nodelD float returns exploitability for a subtree starting
from given node

lock_node nodelD lock_node ok! locks strategy in given decision node

unluck_node nodelD unlock_node ok! unlocks strategy in given decision node

combo_lock _node

nodelD 1326 ints

combo_lock_node ok!

locks specific combos at given node (given
by nodelD). The function expects 1326 0 or 1
ints; 1 = this combo is locked, 0 = this combo
is not locked. COMBO_LOCKED flag is set in
a node.

LOCKED flag overrides this functionality so
make sure not to lock a whole node when
using it

combo_unlock_node

nodelD

combo_unlock_node ok!

Unlocks all the combos in a node and
removes COMBO_LOCKED flag.

set_strategy

nodelD childnum

set_strategy ok!

sets strategy in given decision node for

1326 floats indicated child to provided values;
normalize_tree n/a normalize_tree ok! normalizes the strategies; there is usually no
need to call it as the solver normalizes the
tree itself when needed
set_mes IP | OOP set_mes ok! sets strategy for IP or OOP to most exploitive

one in the whole tree

solve_all_splits

turns | rivers

solver_all_splits ok!

solve all forgotten parts of the tree to
accuracy defined in settings.recalc_accuracy
(it may take a long time)

node_count n/a multiline string returns number of nodes of various types on
flop/turn/river in human readable format
show_effective_stack | n/a int shows effective stacks in the tree

round_up_to

IP | OOP chunks_no
flop | turn | river

round_up_to ok!

rounds the strategies for given player using
specified number of chunks to divide the
strategy (4 chunks is 0 0.25 0.5 0.75 1); from
the flop up to specified street

RANGES & EVALS

show_category_name | n/a 2lines: shows names of hand/draws categories

s hand strength which are then used for range analysis
categories
draw categories

show_categories board 2lines: it returns categories ids (an order returned by
1326 ints show_category _names); first line is for hand
1326 ints categories like top_pair, 2nd one is for draws

