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Electrospray introduction

The electrospray process

nanoESI and multi-ESI

•  Lower volumetric flow rates generates smaller 
droplets at the onset of ESI.

•  Smaller droplets lead to more efficient ionization  
and improved surface charge.

• Overall improvement in workflow sensitivity.

• Splits convenient µ-flow into nano flow regime.

• Reduces the effects of potential clogging.

• Significant increase in theoretical ion flux.

• Overall improvement in workflow sensitivity.

Constant ID versus tapered ID emitter tips

Contact info@trajanscimed.com for further information
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Figure 1. Schematic illustration of typical ESI process and formation of gas phase ions for MS analysis.

Figure 3 - Signal intensity plots for (A) 10 µm constant bore emitter and  
(B) 15 µm tapered bore emitter. (C) Schematic representations of constant  
and tapered bore emitter profiles.
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•  Constant ID dramatically reduces propensity for 
clogging, making them more effective and robust  
for biological analyses.

•  Smaller IDs can be achieved by tapering and can 
therefore improve ionization efficiency.

•  Tapered ID tends to limit the dynamic range of flow 
rate and applied voltage within the workflow as 
discussed by Timperman et al.

•  There is a lack of emitter tips currently available  
that can leverage narrow ID (<10 µm) without 
tapering the inner bore.

Hydrofluoric acid etching

•  The etching protocol and capillary embodiment 
can be multiplexed using micro structured fibre 
technology to form multi-lumen ESI emitters.

•  Borosilicate glass can be introduced into the 
quartz via spatial control to inflict differential 
etch rates along the cross section of the fibre.

•  These differential etch rates can be exploited  
to develop specific structures at the facet.

Figure 4. (A) Schematic representation of the wet-chemical etching method showing the capillary submerged into a solution of HF (48 wt%); (B) and (C) show schematic 
representations of the gradient in [HF] generated by fluid flowing through the bore of the capillary and the respective (B) initial and (C) final profiles.
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Figure 5. Schematic diagrams of (Left) the preform design and (Right)  
the differential etch rates between B2O3 (grey) and fused silica (blue).

Modelling and simulations

Establishing the etch rate: Beyond theoretical
•  OD measurements before and after etching a 360 µm capillary 

in various [HF] provide the necessary data for determining the 
native etch rates of fused silica tubing as a function of [HF].

•  Observed etch rates were commensurate with previous studies 
performed under similar conditions on quartz materials.

•  The native etch rate can then be built into a mathematical model 
to better understand the effects fluid flow through the bore on the 
localized etch rates.
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Figure 6. Effect of [HF] and etch time on the radial etch 
rates of fused-silica tubing.

Figure 7. Concentration and velocity profiles for (A) time=0 and (B) time=t. The background colour represents the concentration of acid and the arrows represent 
dimensionless velocity and the direction of flow in the acid.

Parameter Value Units
ρa 1.15 × 10³ kg/m3

ρw 1.00 × 103 kg/m3

ρs 2.65 × 103 kg/m3

µ 0.9 mPa·s
rb 2-5 µm
R 62.5 µm
k1 7.639 - 7.692 nm/s
k2 2.475 - 2.560
Q 1- 200 nL/min 
D 1- 20 nm2/s
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Parametric modelling results
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Figure 8. Simulated emitter profiles with constant fluid diffusivity (D = 10) and variable flow rates at (A) t = 3 minutes and (B) time = 25 minutes.
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Figure 9. Simulated emitter profiles with constant flow rate (Q = 50) and variable diffusivity at (A) t = 3 minutes and (B) time = 25 minutes.
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Experimental results

•  Simulated profiles suggest that volumetric flow rate and diffusivity of the fluid dominate the etching process.

•  Modelling suggested and experiment confirmed that lower flow rates increases the rate of etching and 
generates concave tip geometries compared to shallow convex geometries at higher volumetric flow rates.

•  Within a subset of flow rate, longer etch times provide a more suitable tip geometry for ESI-MS and it is 
expected that the resulting Taylor cone formation will provide improvements in ion flux and efficiency.
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Figure 10. Tip profiles (generated from image processing of optical micrographs) of 150 µm OD FST etched with volumetric flow rates of (A) 25 nL/min, (B) 50 nL/min,  
(C) 100 nL/min. The colored traces represent sequential increases in etch time. Optical micrographs corresponding to the longest etch time are shown below each flow rate plot.

(A) (B)

(C)

Comparative analysis
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Figure 11. (A) Summary of simulated etch profiles (30 min) under optimized diffusivity for 150 µm OD with 5 µm and 10 µm ID at variable flow rates and (B) experimental 
data for etch rates under 25 nL/min (red), 50 nL/min (black) and 100 nL/min (green).
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Figure 12. Comparative plots showing simulated and experimental profiles overplayed after 10 minutes of etching with volumetric flow rates of (A) Q = 25 nL/min and (B) Q = 50 nL/min.
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Figure 13. Comparative plots showing simulated and experimental profiles overplayed after (A) 10 minutes of etching with volumetric flow rates of Q = 100 nL/min and (B) 32 minutes 
of etching at Q = 25 nL/min.
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Future work
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Figure 2. (A) Effects of volumetric flow rate on the ionization efficiency of ESI-MS (Thomson, 2005) and (B) photograph of multiplexed electrospray using multiple capillary 
emitters coupled to the MS inlet (Smith, 2006).


