## Abstract

The demand for separation techniques for intact proteins is increasing with the introduction of a new generation of high resolution mass spectrometers which are able to measure the mass of small to medium size proteins very accurately. Liquid chromatography is a valuable tool for separating these proteins prior to the MS analysis. Intact protein chromatography is most commonly used in a top-down approach in proteomics and to determine expression levels during recombinant protein synthesis.

The size of the protein molecule results in very low diffusion coefficients and therefore slow mass transfer in and out of the pore system. A sufficiently large pore diameter is required to minimise the effects of restricted pore diffusion. We show examples of the separation of intact proteins on a column packed with 3 µm C8 silica with 1000 Å pore size. The molecular weight of the protein examples reported here cover ribosomal proteins (<40 kDa), monoclonal antibodies (~150 kDa) and intact membrane proteins derived from mouse liver.

Physico-Chemical Background **Diffusion Inside Pores** Diffusion in Free Solution |1-2.104| $D_n = D_f$ The diffusion rate is described by:  $D = \frac{n B^2}{2}$ **\_\_** \_\_ \_  $6\pi\mu r$ Renkin Equation (E.M. Renkin, J.Gen.Physio., 38 (1954) 225.) **Einstein-Stokes Equation**  $D_{f}$  = Diffusion rate constant in free solution  $D_n = Diffusion$  coefficient inside the pores k<sub>B</sub> = Boltzmann constant  $r_s = Stokes$  radius of the analyte T = Temperaturer<sub>∞</sub> = Pore radius r = Stokes radius  $\mu = Viscosity$ Fast diffusion rates but low capacities -0.9 Pores are larger than needed. 100% kinetics and high capacity. Size[Å] Compound | 3.89E-10 Caffeine 7.91E-11 Insulin **~** 0.5 2.75E-11 hSA 04 120Å - 5kDa 170 1.44E-11 IgG 🔵 300Å - 100kDa 🔰 100Å - 5kDa 20.3% 7 1 0 / /.1% 3.7% 0.2 0.1 Caffeine

Figure 1: Normalized diffusion rates of small, medium and large molecules in free solution

# Dedicated Protein Columns - C8, 3 µm, 1000Å

The SGE column range for biological analytes focuses on an optimized pore size for both peptides (200 Å and 300 Å) and proteins (1000 Å) and small particle size (3 µm) to enable lowest possible mass transfer restrictions. Exposure to the analyte to metal surfaces is minimized through the use of glass-lined or PEEK<sup>TM</sup>-lined stainless steel tubing. All tubing is PEEK<sup>TM</sup> coated fused silica. Great emphasis is put





Figure 3: Design of the ProteCol<sup>™</sup> Range Columns



AUSTRALIA & PACIFIC REGION

# Analysis of Intact Proteins Using Liquid Chromatography



"Sweet spot", where diffusion rates are between 50% and 80% of the free diffusion. Good compromise between fast diffusion kinetics and high capacity

> Slow diffusion rates - high capacity -Pores are too small for effective mass transfer.

#### 💊 200Å - 100kDa

120Å - 100kDa 100Å - 100kDa

0.4 0.5 0.6 0.7 0.8 0.9 Analyte diameter/pore diameter

Figure 2: Relative diffusion rates in free solution and inside pores as function of molecule size to pore

# **Accurate Mass Analysis of Intact Ribosomal Proteins**

## Introduction

Since ribosomal proteins are relatively small (Mw=6,000 to 40,000), they can be rapidly identified by accurate LC MS analysis of the intact proteins. In the present application ribosomal proteins isolated from rat liver were separated on a ProteCol<sup>™</sup> C8 HQ1003 column.

### **Sample Preparation**

80S ribosomal proteins were isolated from a rat liver microsomal preparation (Williamson et al; 1997, Eur. J. Biochem. 246: 786-793). One optical density unit at 260 nm of 80S ribosomal proteins was mixed with two volumes of 6M Guanidine HCl to denature the proteins. 1 % (v/v) formic acid was subsequently added to precipitate the nucleic acids. The mixture was centrifuged for 15 min at 13,000 rpm and the supernatant was collected into a sample vial ready for LCMS analysis.



Figure 4: Base peak chromatogram of ribosomal proteins

#### **Data Analysis and Results**

All data were acquired and reference mass corrected via a dual-spray electrospray ionisation (ESI) source. Each scan or data point on the Total Ion Chromatogram (TIC) is an average of 15,000 transients, producing a spectrum every second. Mass spectra were created by averaging the scans across each peak and background subtracted against the first 10 seconds of the TIC. The resulting base peak chromatogram shows very high peak capacity - 119 discrete protein masses were identified; 46 of which were identified as 80S ribosomal proteins. In some cases several different masses of the same protein were identified which correlated with known N- and/or C-terminal processing.

## **Accurate Mass Determination of Intact Monoclonal Antibodies**

A 10 mm x 2 mm ID trap column was used for desalting and sample focussing prior to the MS analysis. The trap column was packed with 3 µm - 1000 Å C8 silica. Again, the large pore size of the stationary phase facilitates a narrow elution profile.



Figure 5: Base peak chromatogram of mAb and MS traces

| No. | RT [min] | Mass        | Protein               | No. | RT [min] | Mass  |       | Protein                 |
|-----|----------|-------------|-----------------------|-----|----------|-------|-------|-------------------------|
| 1   | 22.4     | 10943       | L37                   | 24  | 54.5     | 23191 | 23647 | L14 (native & with mod) |
| 1   | 24.2     | 10943       | L37                   | 25  | 55.3     | 23345 |       | L13a                    |
| 2   | 26.5     | 6648        | S30                   | 26  | 55.3     | 16503 |       | L27a                    |
| 3   | 28.7     | 6276        | L39                   | 27  | 56.2     | 24015 |       | L15                     |
| 4   | 31.9     | 12321       | L36a(L44)             | 28  | 56.7     | 9170  |       | S21, N-acetylmethionine |
| 5   | 36.7     | 17279       | L26                   | 29  | 56.7     | 14776 |       | L23 N-acetylserine      |
| 6   | 36.7     | 9399        | S27a                  | 30  | 57.8     | 15954 |       | S19                     |
| 7   | 37.9     | 9270        | S27a; cleaved C-term. | 31  | 60       | 13284 |       | S20                     |
| 8   | 42       | 18449       | L21 NG to KR          | 32  | 60.8     | 21527 |       | L18                     |
| 9   | 42.3     | 17623 17779 | L24 & L24 (cterm)     | 33  | 61.4     | 29464 |       | S4                      |
| 10  | 42.3     | 18448       | L21                   | 34  | 63.2     | 29862 |       | L7a                     |
| 11  | 43.8     | 15667       | L27                   | 35  | 63.2     | 16314 |       | S16                     |
| 12  | 44.6     | 12122       | L36                   | 35  | 63.6     | 16314 |       | S16                     |
| 13  | 45.6     | 15644       | L28                   | 36  | 64.5     | 29466 |       | S4                      |
| 14  | 46.6     | 8087        | L38                   | 37  | 64.5     | 15379 |       | S17                     |
| 15  | 47.3     | 12465       | L35a                  | 38  | 65.8     | 17091 |       | S13                     |
| 16  | 47.3     | 23922       | L13 (terminal KK)     | 39  | 66.8     | 17629 |       | S18 N-acetylserine      |
| 16  | 47.7     | 23922       | L13 (terminal KK)     | 40  | 66.8     | 22169 |       | S7 N-acetylmeth         |
| 17  | 49.1     | 27908       | L8                    | 40  | 67.4     | 22169 |       | S7 N-acetylmeth         |
| 17  | 49.5     | 27908       | L8                    | 41  | 69.5     | 22460 |       | S9                      |
| 18  | 49.5     | 14164       | L31                   | 42  | 71.6     | 14708 |       | S15a                    |
| 19  | 50       | 18343       | S11                   | 43  | 72.5     | 21893 |       | L9                      |
| 20  | 51       | 14421       | L35                   | 44  | 75.3     | 11772 |       | P2                      |
| 21  | 51.6     | 15465       | S24                   | 44  | 77       | 11852 |       | P2                      |
| 21  | 52.2     | 15466       | S24                   | 45  | 77       | 30355 |       | L7                      |
| 22  | 53.4     | 15727       | L32                   | 45  | 78.5     | 30356 |       | L7                      |
| 23  | 53.9     | 28680       | S6                    | 46  | 78.5     | 26585 |       | S3 N-acetylalanine      |



# **Analysis of Membrane Proteins**

The experiment was performed in three steps: Separation of intact membrane protein sample derived from mouse liver

- using a 3 µm C8 column with 1000 Å pore size.
- 2. Fractions collected from 1. were digested with trypsin off-line.
- 300 Å pore size.

## **Chromatographic conditions for analytical separation**

| System:         | Agilent 1100 CapLC with Agilent MSD- |
|-----------------|--------------------------------------|
| Column:         | ProteCol™-C8 HQ1003 3 µm; 1000 Å ´   |
| Sample:         | 3µl AOHUPO-MPI standard              |
| Flow rate:      | 5.0 µl/min                           |
| Temperature:    | 80°C                                 |
| Mobile Phase A: | 0.1% formic acid in water            |
| Mobile Phase B: | 0.09% formic acid in acetonitrile    |
|                 |                                      |

1-minute fractions of the intact protein separation were collected and digested with trypsin off-line. The dried fractions were reconstituted in 100 mM  $NH_4HCO_3$  and digested with trypsin overnight, acidified with 1% formic acid (FA), concentrated and re-diluted to 10  $\mu$ l with 1% FA.

| Chromatograp    | hic conditions                                   |
|-----------------|--------------------------------------------------|
| System:         | TSP4000 pump, Surveyor autosampler,              |
| Column:         | ProteCol <sup>™</sup> -C18 HQ303 150 µm ID x 100 |
| Sample volume:  | 10 µl                                            |
| Mobile phase A: | 0.1% FA in 5% acetonitrile                       |
| Mobile phase B: | 0.1% FA in 90% acetonitrile                      |
| MS:             | 400-1500 mass range; top 6 ions fragm            |

#### **Data analysis**

Raw data files were converted to mzXML and searched against the Ensembl mouse database using Xtandem algorithm (GPM-XE software). The found proteins were statistically filtered either by number of identified peptides (>4) and/or by a cutoff score (10<sup>-10</sup>). As a result 542 proteins were identified with high confidence.

## Conclusions

By combining stationary phases with the right surface chemistry and the appropriate pore size for the analyte it is possible to separate even "difficult" samples such as membrane proteins. Our investigations into the effect of particle porosity led to the following recommendation for analyte size:

## Acknowledgements

The ribosomal protein results were obtained from Nicholas Williamson and Paul O'Donnell from Bio21 Mass Spectrometry and Peptide Institute, Bio21 Molecular Science and Biotechnology, Melbourne. Monoclonal antibody data was provided by Matthias Pelzing, Bruker Biosciences, Melbourne.

The membrane protein analysis was done in collaboration with Mibel Aguilar, Monash University and Paul Haynes, APAF, Australia.

#### R.P. Freeman, H.J. Wirth, A.A. Gooley SGE Incorporated, 2007 Kramer Lane, Austin Texas. 78758, USA

3. Digested fractions were analyzed by LC-MS/MS using 3 µm C18 column with

-iontrap MS Å 150 mm x 300 µm ID

Thermo linear ion trap ) mm

fragmented with 39% collision energy



Figure 6: Base peak chromatogram of membrane proteins on a capillary column







Figure 8: Relative pore and protein sizes for 1000 Å and 300 Å pores

