IMPROVED SEPARATION OF SEMI-VOLATILES

Dan DiFeo — SGE, Incorporated. 2007 Kramer Lane, Austin, Texas 78758, USA. Peter Dawes, Angus Hibberd — SGE International Ptv. Ltd., 7 Argent Place, Ringwood 3134, Australia,

INTRODUCTION

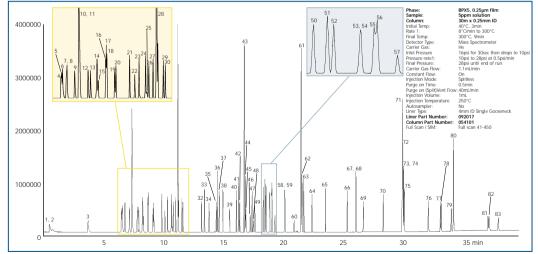
Semi-volatile contaminants in water and soil are some of the most targeted compounds for analysis in environmental laboratories today. Semi-volatile organic compounds are usually found in the soil and ground water as a result of industrial waste processes. Their presence has serious health and environmental implications, which requires monitoring. This class of contaminants constitutes a wide range of compounds with vastly different physical properties making this one of the most challenging analyses to perform and as such, is extremely difficult to analyze in a cost effective turnaround time. The requirement to meet low detection limits for even the highest boiling point contaminants has meant the use of low-bleed or massspectrum grade columns are required. The US environmental protection agency recommends that the analysis be carried out on a 5% phenyl column.

ADVANTAGES OF USING SOLGEL-1ms[™] & BPX5

This poster shows improved separation of the US EPA 8270 mix on a BPX5-5% phenyl column and a SolGel-1ms — 100% polydimethylsiloxane column. The SOLGEL-1ms capillary column used for this analysis is an exceptionally low bleed, high temperature column. The sol-gel material used encapsulates the 100% polydimethylsiloxane into a sol-gel matrix. The sol-gel matrix, which is essentially a synthetic glass, is then chemically bonded to the fused silica surface. This type of bonding surface has certain advantages over conventional 100% polydimethylsiloxane. These advantages include lower bleed at higher temperatures, excellent inertness and increased resistance to degradation.

The BPX5 column is also an extremely inert and low bleed capillary column with a maximum temperature of 360/370°C. The low bleed characteristics of these two columns is especially beneficial for the late eluting semi-volatiles. The lower bleed levels at elevated temperatures leads to better signal to noise ratios allowing for lower detection limits to be achieved. The high degree of inertness exhibited by these two capillary columns gives excellent peak shape allowing for reproducible quantitation.

The upper temperature limits of the BPX5 and SoLGEL-1ms[™] columns allows the user to bake out any high boiling contaminants out of the column after the analysis without damaging the stationary phase. Baking out high boiling contaminants ensures that they do not interfere with retention times or elevate baseline in future analyses and can be incorporated into the GC method resulting in less instrument downtime.


SUMMARY

The SoLGEL-1ms[™] and the BPX5 capillary columns are the ideal choice for analysis of the US EPA 8270 semi-volatiles mixture. Excellent separation of the various components in less than 40 minutes is easily achieved. The low bleed levels at high temperatures allow for very low detection limits of even the most difficult analytes.

ACKNOWLEDGMENTS

We would like to thank Mark Ferry from ECS/MDL. USA for supplying the chromatograms and data for this poster.

TP-0057-0

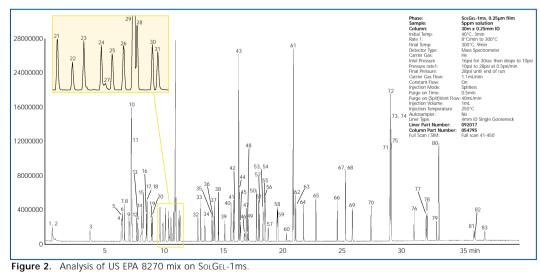


Figure 1. Analysis of US EPA 8270 mix on BPX5

475GE	72. Chrysene-d12 73. Chrysene 74. 3.3-Dichlorobenzidine 75. bic/-2chtyhkey()phthalate 76. Di-n-ochy phthalate 77. Benzolph(Ibuoranthene	60. Pentachlorophenol 61. Phenanthrene-d10 62. Phenanthrene 63. Anthracene 64. Carbazole 65. Di-r-butki phthalate	 4-Nitrophenol 2,4-Dinitrotoluene Diethyiphthalate Fluorene 4-Chlorophenyl phenyl ether 2. 4-Chlorophenyl phenyl ether 	 2,4,5-Trichlorophenol 2-Fluorobiphenyl 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 	 bis-(2-Chloroethoxy) methane Benzoic acid 2.6. 2.4-Dichlorophenol 1.2.4-Trichlorobenzene Naphthalene-d8 Naphthalene 	12. 1,2-Dichlorobenzene 13. Benzyl alcohol 14. 2-Methyl phenol 15. <i>bis</i> (2-chloroisopropyl)ether 16. <i>n</i> -Nitroso-di-n-propylamine 17. Hexachloroethane	Components 1. Pyridine 2. <i>n</i> -Nitrosodimethylamine 3. 2-Fluorophenol 4. Phenol-d5 5. Phenol
SGE, Incorporate	78. Benzo[a]filuoranthene 79. Benzo[a]ovrene	66. Fluoranthene 67. Benzidine	54. 4-Nitroaniline 55. n-Nitrosodiphenylamine	42. 2,6-Dinitrotoluene 43. Acenaphthene-d10	 Kapitilarene Hexachlorobutadiene 4-Chloroaniline 	18. 4-Methylphenol 19. Nitrobenzene-d5	6. Aniline 7. 2-Chlorophenol
2007 Kramer Lane, Austin, Texas 78758, US Toll Free: (800) 945 6154 Tel: (512) 837 7190 Fax: (512) 836 915 Email: usa@sge.com Web: www.sge.co	80. Perylene-d12 81. Indeno[1.2,3-cd]perylene 82. Dibenz[a,h]anthracene 83. Benzo[g,h.i]perylene	68. Pyrene 69. p-Terphenyl-d14 70. Butyl benzyl phthalate 71. Benz[a]anthracene	56. Azobenzene 57. 2,4,6-Tribromophenol 58. 4-Bromophenyl phenyl ether 59. Hexachlorobenzene	 Acenaphthene 3-Nitroaniline 2,4-Dinitrophenol Dibenzofuran 	 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 	20. Nitrobenzene 21. Isophorone 22. 2-Nitrophenol 23. 2,4-Xylenol	 bis-(2-chloroethyl) ether 1,3-Dichlorobenzene 1,4-Dichlorobenzene-d4 1,4-Dichlorobenzene
TD 007							