CIS Gas filters

PRODUCT DATA

Accessories | ZPure[™] 0₂/H₂0

Pure gas is a critical requirement in gas chromatography, spectroscopy, optics, lithography, and numerous other applications in manufacturing and analytical laboratories. The ZPure[™] line of filters remove a wide range of contaminants to trace levels.

Features and benefits

- High-efficiency in-line traps with outstanding capacity.
- High quality activated adsorbents for long purifier life and efficient contaminant removal.
- Various size and fitting configurations to fit existing installations.
- Filter lifetime is dependent on quality of incoming gas, and the flow rate.
- Individually leak-tested.

Recommended applications

It can be used to purify inert gases, He, Ar, N₂, and H₂, making it ideal for use with GC and GC/MS carrier gas lines. It is also recommended for any application requiring ultra-pure gas free from oxygen and moisture.

Product specifications

ZPure [™] O ₂ /H ₂ O							
Volume	Function	Capacity (nominal-max)	Outlet concentration at nominal flow rate	Flow rate (nominal-max)	Max pressure	Dimensions	Fittings
130 cc	Removes oxygen and water from inert gases	275 - 463 cc oxygen 4.3 - 6.6 g water		430 cc/min - 1.4 SLPM	68.9 bar /	3.2 cm x 28 cm	1/8" and 1/4" brass and
475 cc		1020 - 1691 cc oxygen 15.9 - 24.1 g water	Oxygen < 5 ppb	1.3 - 4.9 SLPM		3.8 cm x 57 cm	
500 cc		1060 - 1780 cc oxygen 16.7 - 25.3 g water	Moisture < 20 ppb	1.6 - 5.2 SLPM	1000 psi	5 cm x 35 cm	stainless steel compression
750 cc		1500 - 2671 cc oxygen 25.0 - 38.0 g water		2.5 - 7.7 SLPM		5 cm x 50 cm	

1) Oxygen capacity is a function of flow rate - the nominal oxygen capacity is determined using the nominal flow rate. The maximum oxygen capacity is determined using 30% of the nominal flow rate.

2) The nominal water capacity is determined for an inlet impurity level of 200 ppm H₂O. The maximum water capacity is determined for an inlet impurity level of 10000 ppm H₂O.

3) The nominal hydrocarbon capacity is determined for an inlet impurity level of 500 ppm pentane. The maximum hydrocarbon capacity is determined for an inlet impurity level of 2300 ppm pentane.

4) Nominal flow rate is the recommended flow rate for an estimated gas purifier life of 1 year. This assumes the following inlet impurities: 1 ppm O₂, 1 ppm H₂O, and 1 ppm HC (C5 and heavier). The maximum recommended flow rate is recommended for intermittent use only.

For more information about this product visit www.trajanscimed.com or contact techsupport@trajanscimed.com

