DETERMINATION OF ORGANIC PRIORITY POLLUTANTS AND EMERGING COMPOUNDS IN WASTEWATER BY MICRO SOLID PHASE EXTRACTION COUPLED TO GCMS

Prieto A¹, Schrader S¹, Moeder M¹, Lahoutifard N²
¹Helmholtz-Center for Environmental Research UFZ, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig; Germany
²SGE Europe, 1 Potters Lane, Kiln Farm, Milton Keynes, MK11 3LA, UK

Acknowledgements
A. Prieto thanks the Basque Government for her postdoctoral fellowship.

References:
Introduction

A new fully automated procedure for the simultaneous determination of 41 multi-class priority and emerging organic pollutants in water samples is presented combining micro solid phase extraction (MEPS) with large volume injection–GC-MS.

In compliance with national and international directives, regular environmental monitoring is demanded which requires appropriate analytical methods for fast and sensitive detection of relevant compounds such as the priority pollutants polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) or endocrine disrupting compounds.

Miniaturization, particularly of included sample preparation, is a key feature in the development of automated analytical protocols and in this context, MEPS™ is emerging as a novel and promising tool. The list of target compounds included PAHs, PCBs, phthalate esters (PEs), nonylphenols (NPs), bisphenol A (BPA) and selected steroid hormones.

The developed methods were applied to the determination of the target analytes in snow and wastewater samples.
MEPS™ Procedure
Microextraction was performed using MEPS™ (SGE Europe). A 100 µL or 250 µL gas-tight syringe is equipped with a small container incorporated into the needle (Fig 1). The MEPS syringe was used in connection with a large volume injector type CIS 4 (Gerstel) and samples were fully automatically processed by a Multi Purpose Sampler MPS 2 (Gerstel) and controlled by Gerstel Maestro software.

Standard SPE was performed with a Visiprep SPE manifold (Supelco) using 200 mg of C18 sorbent (polar plus® C-18 bonded phase, J.T. Baker, USA) in 2 mL cartridges.
Instrument
GC-MSD instrument (Agilent 6890)

Injector
PTV injector (CIS 4, Gerstel)

Detector
Agilent 5973 Mass Selective Detector

Inlet details
Deactivated baffled liner - Split, 2.5µL/s, 50 °C, 87.6 kPa. Solvent vent at 0.7 min for 70 mL/min. Splitless for 1.5 min 720 °C/min to 300 °C and held to 300 °C for 5 min

Solvent
Ethyl acetate/hexane (50:50, v/v)

Capillary
HP-5MS (30 m x 0.25 mm, 0.25 µm)

Oven
50 °C for 2 min with 15 °C/min to 100 °C with 10 °C/min to 290 °C for 15 min.

Transfer line
300 °C

Analyser
150 °C

Figure 2. Comparison of several elution/injection volumes (25–100 µL) for selected analytes extracted with MEPS™. 75µL (1×25µL+1×50µL) was chosen as the elution volume in order to avoid peak splitting observed for the most volatile compounds when total volumes higher than 75µL were injected consecutively (2×50µL) into the PTV.
Results

The developed MEPS-LVI-GC-MS and SPE-LVI-GC-MS chromatographic procedures exhibited excellent linearity (R² > 0.99) for the majority of compounds (PAHs, PCBs, phthalate esters and nonylphenols¹). The results demonstrate the high sensitivity of the MEPS™ procedure in comparison to the commonly applied SPE methodology. Furthermore, MEPS™ allows the extraction of only 800 µL of sample volume to detect the target compounds at ng/L concentration level.

Figure 3. Influence of the number of extraction steps on the responses of selected analytes using MEPS™

Figure 4. Evaluation of sample loading technique, multiple draw-eject cycle mode vs. extract-discard mode (each sample aliquot pumped only once through the MEPS™-BIN then discarded before the next sample aliquot was pumped). Chromatographic responses of selected compounds.
• Accurate multi-residue determination was achieved for 41 organic pollutants in water at low levels (ng/L) from sample volume of 800 µL.
• Use of isotopically labelled standards avoided standard addition even for wastewater samples.
• Fully automated multi-residue protocol saves time and solvent compared to standard SPE methodology.
• Unlike conventional SPE cartridges the MEPS™ materials allow multiple use (lifetime depends on sample matrix and analytes).
• LODs for the MEPS™ protocol: 0.2 and 266 ng/L (800 µL sample) comparable to those obtained by off line SPE (0.2 to 736 ng/L for 100 mL sample volume).
• Recoveries (>75%) and precision of the methods (RSD) was below 21% for all compounds.