10. $\int_{1}^{\infty} x^{-\frac{5}{4}} d x$ is
(A) 4
(B) $\frac{5}{4}$
(C) $\frac{1}{4}$
(D) -4
(E) divergent

Answer

11. A function f is continuous on the closed interval $[4,6]$ and twice differentiable on the open interval $(4,6)$. If $f^{\prime}(5)=-3$, and f is concave downwards on the given interval, which of the following could be a table of values for f ?
(A)

x	$f(x)$
4	8
5	4
6	0

(B)

x	$f(x)$
4	8
5	6
6	2

(C)

x	$f(x)$
4	8
5	6
6	5

(D)

x	$f(x)$
4	6
5	4
6	2

(E)

x	$f(x)$
4	8
5	3
6	2

Answer

12. The equation of the line tangent to the curve $y=\frac{k x+8}{k+x}$ at $x=-2$ is $y=x+4$. What is the value of k ?
(A) -3
(B) -1
(C) 1
(D) 3
(E) 4

Answer
\square

x	5	6	9	11	12
$f(x)$	10	7	11	12	8

13. A function f is continuous on the closed interval [5,12] and differentiable on the open interval $(5,12)$ and f has the values given in the table above. Using the subintervals [5, 6], [6, 9$],[9,11]$, and $[11,12]$, what is the right Riemann sum approximation to $\int_{5}^{12} f(x) d x$?
(A) 64
(B) 65
(C) 66
(D) 68.5
(E) 72

Answer
\square
14. $\sum_{k=0}^{\infty}\left(-\frac{\pi}{3}\right)^{k}$ is
(A) $\frac{1}{1-\frac{\pi}{3}}$
(B) $\frac{\frac{\pi}{3}}{1-\frac{\pi}{3}}$
(C) $\frac{1}{1+\frac{\pi}{3}}$
(D) $\frac{\frac{\pi}{3}}{1+\frac{\pi}{3}}$
(E) divergent

Answer

15. The following statements concerning the location of an extreme value of a twice-differentiable funtion, f, are all true. Which statement also includes the correct justification?
(A) The function has a maximum at $x=5$ because $f^{\prime}(5)=0$.
(B) The function has a maximum at $x=5$ because $f^{\prime}(x)<0$ for $x<5$ and $f^{\prime}(x)>0$ for $x>5$.
(C) The function has a minimum at $x=3$ because the tangent line at $x=3$ is horizontal.
(D) The function has a minimum at $x=3$ because $f^{\prime}(x)<0$ for $x<3$ and $f^{\prime}(x)>0$ for $x>3$.
(E) The function has a minimum at $x=3$ because $f^{\prime \prime}(3)<0$.

Graph of f
16. The graph of a differentiable function f is shown above. The graph has a relative minimum at $x=1$ and a relative maximum at $x=5$. Let g be the function defined by $g(x)=\int_{0}^{x} f(t) d t$. For what value of x does the graph of g change from concave up to concave down?
(A) 0
(B) 1
(C) 2
(D) 5
(E) 7

Answer

