SAMPLE EXAMINATION III

Answers to Multiple-Choice Questions

1. The area of the region is represented by $\int_{1}^{3}\left(3 x^{2}+2 x\right) d x$.

$$
\int_{1}^{3}\left(3 x^{2}+2 x\right) d x=x^{3}+\left.x^{2}\right|_{1} ^{3}=(27+9)-(1+1)=36-2=34
$$

The correct choice is (B).
2. Rewrite the function without the absolute value signs:

$$
f(x)=\left\{\begin{array}{r}
-x, x<0 \\
0, x=0 \\
x,
\end{array}\right.
$$

Then $\int_{-4}^{2} f(x) d x=\int_{-4}^{0}(-x) d x+\int_{0}^{2} x d x$

$$
\begin{aligned}
& =-\left.\frac{x^{2}}{2}\right|_{-4} ^{0}+\left.\frac{x^{2}}{2}\right|_{0} ^{2} \\
& =(0-(-8))+(2-0) \\
& =10
\end{aligned}
$$

The correct choice is (D).
3. The units of a definite integral or a Riemann sum are the units of the dependent variable, $C(s)$, multiplied by the units of the independent variable, $d s$, in this case
$($ gallons $/$ mile $) \times($ miles $/$ hour $)=$ gallons $/$ hour
The correct choice is (B).
4. Given: $\quad \frac{d r}{d t}=2$

Find: $\frac{d V}{d t}$ when $r=10$
Since the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$, differentiate both sides of the equation with respect to t.

$$
\begin{aligned}
\frac{d V}{d t} & =4 \pi r^{2} \frac{d r}{d t} \\
\text { or } \frac{d V}{d t} & =4 \pi(10)^{2}(2)=800 \pi
\end{aligned}
$$

The correct choice is (D).
5. Since the laser beam changes direction at $t=2$, the total distance traveled by the laser beam is calculated using two integrals. For motion to the left: $\mid \int_{1}^{2}\left(t^{2}-4\right) d t$, and for motion to the right: $\int_{2}^{3}\left(t^{2}-4\right) d t$.
$\left|\int_{1}^{2}\left(t^{2}-4\right) d t\right|=\left|\left(\frac{t^{3}}{3}-4 t\right)\right|_{1}^{2}\left|=\left|\left(\frac{8}{3}-8\right)-\left(\frac{1}{3}-4\right)\right|=\frac{5}{3}\right.$
$\int_{2}^{3}\left(t^{2}-4\right) d t=\left.\left(\frac{t^{3}}{3}-4 t\right)\right|_{2} ^{3}=\left(\frac{27}{3}-12\right)-\left(\frac{8}{3}-8\right)=\frac{7}{3}$
Therefore the total distance traveled by the laser beam is 4 feet.
The correct choice is (A).
6. By the Fundamental Theorem of Calculus: $\int_{1}^{4} f^{\prime}(x) d x=f(4)-f(1)=2-(-5)=7$

The correct choice is (D).
7. The given limit is the derivative of $g(x)$ at $x=3$. Since $g^{\prime}(3)$ is negative, the function must be decreasing at $x=3$.

The correct choice is (A).
8. Let $u=x^{2}+1$

$$
d u=2 x d x \Rightarrow x d x=\frac{1}{2} d u
$$

$\int \frac{x}{x^{2}+1} d x=\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|=\left.\frac{1}{2} \ln \left(x^{2}+1\right)\right|_{1} ^{3}=\frac{1}{2}(\ln 10-\ln 2)$
Since $\ln 10-\ln 2=\ln \left(\frac{10}{2}\right)=\ln 5$, therefore, $\int_{1}^{3} \frac{x}{x^{2}+1} d x=\frac{1}{2} \ln 5$.
The correct choice is (C).
9. Using the properties of logarithms and the Chain Rule:

$$
\begin{aligned}
\frac{d}{d x} \ln \left(\frac{1}{x^{2}-1}\right) & =\frac{d}{d x}\left(\ln 1-\ln \left(x^{2}-1\right)\right) \\
& =\frac{d}{d x}\left(-\ln \left(x^{2}-1\right)\right) \\
& =-\frac{2 x}{x^{2}-1}=\frac{2 x}{1-x^{2}}
\end{aligned}
$$

The correct choice is (A).
10. Method 1: The average rate of change is given by $\frac{f(b)-f(a)}{b-a}=\frac{e^{(9)}-e^{(9)}}{3-(-3)}=0$. The instantaneous rate of change is the derivative $f^{\prime}(x)=2 x e^{\left(x^{2}\right)}$. Solving $2 x e^{\left(x^{2}\right)}=0$ gives only one value of $x=0$.

Method 2: The instantaneous rate of change is given by the derivative of $f: f^{\prime}(x)=2 x e^{\left(x^{2}\right)}$. Since the derivative is always increasing $\left(f^{\prime \prime}(x)=\left(4 x^{2}+2\right) e^{\left(x^{2}\right)}>0\right)$ it will equal every real number exactly once. Therefore whatever the average value is, it will equal it once.

The correct choice is (B).

