6a. $g(4.5)=13.5$. This is the area under the graph of f in the first quadrant between $x=0$ and $x=4.5$.
$g^{\prime}(4.5)=f(4.5)=0 ; g^{\prime \prime}(4.5)=f^{\prime}(4.5)=-2$, the slope of the line segment containing $(4.5,0)$.

6b. Average value of f equals $\frac{1}{5-(-3)} \int_{-3}^{5} f(x) d x=\frac{1}{8}\left[\int_{-3}^{3} f(x) d x+\int_{3}^{5} f(x) d x\right]$

$$
=\frac{1}{8}[27+2]=\frac{29}{8}
$$

The two integrals are found by finding the signed areas under the graph of f.

6 c . There is a point of inflection where f, the derivative of g, has a maximum or minimum. This occurs only at $x=5$, where f changes from decreasing to increasing, or where f^{\prime} changes from negative to positive.

6 d . The function g increases from $x=-3$ to $x=4.5$, then decreases until $x=7$, and then increases again until $x=9$. There is a maximum at $(4.5,13.5)$ (from part (a)). There is an endpoint maximum at $x=9$. Use the signed area to find $g(9)$:

$$
\begin{aligned}
g(9) & =g(4.5)+\int_{4.5}^{9} f(x) d x \\
& =13.5-0.25
\end{aligned}
$$

The endpoint maximum occurs at $(9,13.25)$.

